SUMMARYWe introduce a new numerical method to model the fluid-structure interaction between a microcapsule and an external flow. An explicit finite element method is used to model the large deformation of the capsule wall, which is treated as a bidimensional hyperelastic membrane. It is coupled with a boundary integral method to solve for the internal and external Stokes flows. Our results are compared with previous studies in two classical test cases: a capsule in a simple shear flow and in a planar hyperbolic flow. The method is found to be numerically stable, even when the membrane undergoes in-plane compression, which had been shown to be a destabilizing factor for other methods. The results are in very good agreement with the literature. When the viscous forces are increased with respect to the membrane elastic forces, three regimes are found for both flow cases. Our method allows a precise characterization of the critical parameters governing the transitions.
The paper deals with a method to characterize the membrane mechanical properties of microcapsules. The technique consists in flowing microcapsules into a microchannel of comparable dimensions, observing the deformation as a function of the flow rate, and deducing the membrane elastic modulus by means of an inverse method based on a numerical model of the flowing capsule. The method is tested on liquid-filled microcapsules (average diameter of 67 μm) with a membrane made of crossed-linked ovalbumin flowing inside a cylindrical channel. For a neo-Hookean constitutive law, the method yields a constant value for the membrane shear elastic modulus independently of capsule size or deformation. When the capsules are flowed into a square-section microchannel, an approximate analysis of the deformation yields the same value of the membrane shear modulus provided that the size ratio between the capsule and the channel is of order unity.
The large deformations of an initially-ellipsoidal capsule in a simple shear flow are studied by coupling a boundary integral method for the internal and external flows and a finite-element method for the capsule wall motion. Oblate and prolate spheroids are considered (initial aspect ratios: 0.5 and 2) in the case where the internal and external fluids have the same viscosity and the revolution axis of the initial spheroid lies in the shear plane. The influence of the membrane mechanical properties (mechanical law and ratio of shear to area dilatation moduli) on the capsule behaviour is investigated. Two regimes are found depending on the value of a capillary number comparing viscous and elastic forces. At low capillary numbers, the capsule tumbles, behaving mostly like a solid particle. At higher capillary numbers, the capsule has a fluid-like behaviour and oscillates in the shear flow while its membrane continuously rotates around its deformed shape. During the tumbling-to-swinging transition, the capsule transits through an almost circular profile in the shear plane for which a long axis can no longer be defined. The critical transition capillary number is found to depend mainly on the initial shape of the capsule and on its shear modulus, and weakly on the area dilatation modulus. Qualitatively, oblate and prolate capsules are found to behave similarly, particularly at large capillary numbers when the influence of the initial state fades out. However, the capillary number at which the transition occurs is significantly lower for oblate spheroids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.