The thermocompressor is the driving source and the core heat-work conversion part of Vuilleumier (VM) refrigerator, which cause pressure fluctuation of the gas by converting the thermal energy at a constant volume. The thermocompressor is consists of cylinder, heater, generator, cooler, displacer, driving mechanism, load, hot cavity and cold cavity. Therefore, the ideal thermocompressor was introduced for thermal analysis to simplify the thermodynamic process and components. In order to better understand the principle of heat-work conversion in the ideal thermocompressor, firstly, the thermodynamic concept of the variable mass system that can be used in the ideal thermocompressor was introduced. Secondly, the thermodynamic process of the ideal thermocompressor under the Euler view was analyzed. Thirdly, the internal operation characteristics of the thermocompressor without load and driving displacer type refrigerator were discussed. At last, the distributions of enthalpy flow, entropy flow and exergy flow in all parts of the ideal thermocompressor were carried out. The results show that the thermocompressor does not output the net entropy flow to the load in one cycle and the flow exergy output by thermocompressor is equal in quantity to the acoustic power output by thermocompressor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.