Parkinson’s disease (PD) is characterized pathologically by the formation of ubiquitin and α-synuclein (α-syn)-containing inclusions (Lewy bodies), dystrophic dopamine (DA) terminals, and degeneration of midbrain DA neurons. The precise molecular mechanisms underlying these pathological features remain elusive. Accumulating evidence has implicated dysfunctional autophagy, the cell self-digestion and neuroprotective pathway, as one of the pathogenic systems contributing to the development of idiopathic PD. Here we characterize autophagy-deficient mouse models and provide in vivo evidence for the potential role that impaired autophagy plays in pathogenesis associated with PD. Cell-specific deletion of essential autophagy gene Atg7 in midbrain DA neurons causes delayed neurodegeneration, accompanied by late-onset locomotor deficits. In contrast, Atg7-deficient DA neurons in the midbrain exhibit early dendritic and axonal dystrophy, reduced striatal dopamine content, and the formation of somatic and dendritic ubiquitinated inclusions in DA neurons. Furthermore, whole-brain specific loss of Atg7 leads to presynaptic accumulation of α-syn and LRRK2 proteins, which are encoded by two autosomal dominantly inherited PD-related genes. Our results suggest that disrupted autophagy may be associated with enhanced levels of endogenous α-syn and LRRK2 proteins in vivo. Our findings implicate dysfunctional autophagy as one of the failing cellular mechanisms involved in the pathogenesis of idiopathic PD.
Epidemiological evidence suggests that hypertension may accelerate the onset and progression of Alzheimer's disease (AD). In this study, we explored the role of hypertension in the neurodegenerative changes associated with Aβ and tau aggregation. We induced hypertension in APPswe
Tg2576 and P301L-tauTg mouse models. In Tg2576 mice, experimental hypertension was associated with
a significant increase of the accumulation of Amyloid-β (Aβ) peptides in brain
tissue and a significant reduction of Aβ peptides in serum (P < .05). These results
indicate that hypertension may promote AD-type Aβ neuropathology in Tg2576. In P301L-tauTg mice we found that the presence of hypertension was
significantly associated with aggravated motor function assessed by hindlimb
extension test (P = .01). These results suggest that hypertension may play a role
in accelerating the progression of motor dysfunction associated with tau-related
alterations. Our studies suggest that the management of blood pressure (BP)
may alleviate AD-type Aβ neuropathology and neurological disorders associated
with abnormal tau metabolism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.