Invariant natural killer T-cells (iNKT) are a glycolipid-responsive subset of T-lymphocytes that fulfill a pivotal role in the immune system. The archetypical synthetic glycolipid, α-GalCer, whose molecular framework is inspired by a group of amphiphilic natural products, remains the most studied antigen for iNKT-cells. Nonetheless, the potential of α-GalCer as an immunostimulating agent is compromised by the fact that this glycolipid elicits simultaneous secretion of Th1- and Th2-cytokines. This has incited medicinal chemistry efforts to identify analogues that are able to perturb the Th1/Th2-balance. In this work, we present the synthesis of an extensive set of 4”-O-alkylated α-GalCer analogues, which were evaluated in vivo for their cytokine induction. We have found that conversion of the 4”-OH to ether moieties reduces the immunogenic potential in mice as compared to α-GalCer. Yet, the benzyl-modified glycolipids are able to produce a distinct pro-inflammatory immune response. The crystal structures suggest an extra hydrophobic interaction between the benzyl moiety and the α2-helix of CD1d.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.