In this study, the first application of a capillary zone electrophoresis‐electrochemical detection (CE‐ECD) method for concurrent determination of hydrogen peroxide (H2O2) and ascorbic acid (AA), was developed using the Pt nanoparticles (PtNPs) modified Pt micro‐disk electrode (PtME). The electrocatalytic activity of the modified electrode for H2O2 and AA was characterized by cyclic voltammetry. Under optimized experimental conditions, highly linear calibration plots were observed for both H2O2 and AA, with concentration linear ranges of 0.8 μM to 0.8 mM and 1.0 μM to 0.8 mM. Detection limits of 0.2 μM H2O2 and 0.5 μM AA were determined on the basis of the signal‐to‐noise characteristics (S/N=3) of an electropherogram. Compared with the unmodified PtME, the sensitivity was promoted in that PtNPs/PtME provided an increased effective electrode surface and high catalytic activity toward H2O2 and AA. Using this method, the added H2O2 and AA in Mizone, a kind of functional drink, were detected, and the concentration of AA was found to be 2.33 mM (n=3). The recovery rates were 95.3 % for H2O2 and 98.7 % for AA. The novel approach provided a wide linear range, low detection limit, good reproducibility and stability. It will provide a new insight into the balance of reactive oxygen species and antioxidant in biological systems.
ZnO nanowires doped with Mg have been successfully prepared on Au-coated Si (111) substrates using chemical vapor deposition method with a mixture of ZnO, Mg, and activated carbon powders as reactants at 850• C. The structural, compositional, morphological and optical properties of the samples were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, and photoluminescence spectroscopy. The nanowires are single crystalline in nature and preferentially grow up along [0001] direction with the average diameter and length of about 60 nm and several hundred micrometers, respectively, thinner and longer than the results of literature using the similar method. Room temperature photoluminescence spectroscopy shows a blueshift from the bulk band gap emission, which can be attributed to Mg doping that were detected by energy dispersive X-ray analysis EDX in the nanowires. Finally, the possible growth mechanism of crystalline ZnO nanowires is discussed briefly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.