This study showed that serum levels of free RANKL and total RANKL decrease with age, and also revealed some gender-related differences.
Osteoporose in einer Population aus Bratislavaaltersabhängige KnochendichteänderungenZusammenfassung. Wir haben bei 498 Frauen aus Bratislava im Alter zwischen 21 und 90 Jahren die Knochendichte im proximalen Bereich des Femurs gemessen (in den "Regions of interest" ROI 1 -neck, ROI 2 -Ward's area, ROI 3 -Trochanter). Auf Grund der empirischen Häu-figkeitsverteilung der T-Werte haben wir mit dem χ 2 -test (Chi-square goodness-of-fit statistics) in der Grundgruppe der Population die Häufigkeitsverteilung festgestellt. Die entsprechend der T-Werte festgestellte Häufigkeit der Osteoporose betrug in ROI 1 2,40 %, in ROI 2 16,34 % und in ROI 3 3,83 %.Die Patientinnen wurden nach dem Alter in 10-Jahres-Gruppen eingeteilt. In jeder Gruppe wurde die Zahl der Osteoporosepatientinnen in Prozent (%) berechnet. Es hat uns interessiert, welcher ROI für die Feststellung der Altersabhängigkeit der Knochendichte am besten geeignet ist. Obwohl die Werte von ROI 2 (Ward's), entsprechend der WHO, nicht zur diagnostischen Sicherstellungen der Osteoporose zugelassen sind, zeigte ROI 2 die Altersabhängigkeit der Knochendichte am besten. Gegenüber ROI 1 und ROI 3 wird in der ROI 2 überwiegend trabekulärer Knochen gemessen. Die geringere Altersabhän-gigkeit der Knochendichte in ROI 1 und ROI 3 dürfte durch osteoarthrotische Veränderungen bedingt sein. Bei der Streuungsanalyse hat sich gezeigt, dass die Alterskategorie 9,6 % der Ganzvariabilität der T-Werte für ROI 1 , 24,7 % für ROI 2 und 11,7 % für ROI 3 erklärt. Im Fisher-Test wurde die statistische Relevanz (α = 0,05) der Altersabhängig-keit der Knochendichtewerte in ROI 1 , ROI 2 , ROI 3 unabhängig von anderen Risikofaktoren aufgezeigt. Um den Störfaktor der Osteoarthrose auszuschließen, ist die Entwicklung und Anwendung von neuen densitometrischen Methoden, die getrennt kortikalen and trabekularen Knochen messen, notwendig.Schlüsselwörter: Knochendichte, der proximale Bereich des Femurs, Osteoporose, Frauen, epidemiologische Studie.Summary. Patients and methods: We analysed 498 women (n = 498) in a Bratislava (BA) population aged 21 to 90. We measured bone mineral density (BMD) in the proximal femur with one densitometric instrument (DXA Osteocore II, France; dual energy X-ray absorptiometry), applying BMD and T-score values in three standard regions of interest: Neck (ROI 1 ), Ward's area (ROI 2 ), Trochanter (ROI 3 ). Results: Measured values of T-score in ROI 1, ROI 2 had normal distribution and a lognormal distribution of frequency in ROI 3 . Using χ 2 -test (chi-square goodness-of-fit statistics), we determined the distribution of the frequency of T-score values and the percentage of osteoporosis incidence in the Bratislava female population. The osteoporosis incidence, according to T-score values measured in ROI 1 was 2.40%, in ROI 2 16.34% and in ROI 3 3.83%. Following the division of women into ten-year intervals, the statistically significant sample averages of T-score values were decreasing in relation to age only for ROI 2 . Osteoporosis incidence in age intervals was ri...
The study's contribution lies in the finding that the relative fracture risk of the proximal femur in women increases if the T-score is <-2.5 SD and, simultaneously, the Z-score
The latest methods in estimating the probability (absolute risk) of osteoporotic fractures include several logistic regression models, based on qualitative risk factors plus bone mineral density (BMD), and the probability estimate of fracture in the future. The Slovak logistic regression model, in contrast to other models, is created from quantitative variables of the proximal femur (in International System of Units) and estimates the probability of fracture by fall. Objectives The first objective of this study was to order selected independent variables according to the intensity of their influence (statistical significance) upon the occurrence of values of the dependent variable: femur strength index (FSI). The second objective was to determine, using logistic regression, whether the odds of FSI acquiring a pathological value (femoral neck fracture by fall) increased or declined if the value of the variables (T–score total hip, BMI, alpha angle, theta angle and HAL) were raised by one unit. Patients and methods Bone densitometer measurements using dual energy X–ray absorptiometry (DXA), (Prodigy, Primo, GE, USA) of the left proximal femur were obtained from 3 216 East Slovak women with primary or secondary osteoporosis or osteopenia, aged 20–89 years (mean age 58.9; 95% CI: −58.42; 59.38). The following variables were measured: FSI, T-score total hip BMD, body mass index (BMI), as were the geometrical variables of proximal femur alpha angle (α angle), theta angle (θ angle), and hip axis length (HAL). Statistical analysis Logistic regression was used to measure the influence of the independent variables (T-score total hip, alpha angle, theta angle, HAL, BMI) upon the dependent variable (FSI). Results The order of independent variables according to the intensity of their influence (greatest to least) upon the occurrence of values of the dependent FSI variable was found to be: BMI, theta angle, T-score total hip, alpha angle, and HAL. An increase of one unit of an independent variable was shown, with statistical significance, to either raise or decrease the odds of the dependent FSI variable. Specific findings were as follows: an increase by 1° of the α angle escalated the probability of FSI acquiring a pathological value by 1111 times; an increase by 1° of the θ angle was found to boost these odds 1231 times; an increase by 1 mm of the HAL was found to increase these odds by 1043 times; an increase by 1.0 kg/m 2 of the BMI raised the odds 1302 times; an increase by +1 standard deviation of the value of the T-score total hip subsequently decreased these odds 198 times. Conclusion The equation of the Slovak regression model makes it possible in praxis to determine the probability or absolute risk of femoral neck fracture by fall at those densitometrical workplaces without a program for measuring the FSI variable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.