OBJECTIVE-The Diabetes Control and ComplicationsTrial (DCCT) demonstrated the powerful impact of glycemic control on the early manifestations of microvascular complications. Contemporary prospective data on the evolution of macrovascular and late microvascular complications of type 1 diabetes are limited. The Epidemiology of Diabetes Interventions and Complications (EDIC) study is a multicenter, longitudinal, observational study designed to use the well-characterized DCCT cohort of >1,400 patients to determine the long-term effects of prior separation of glycemic levels on micro-and macrovascular outcomes.RESEARCH DESIGN AND METHODS-Using a standardized annual history and physical examination, 28 EDIC clinical centers that were DCCT clinics will follow the EDIC cohort for 10 years. Annual evaluation also includes resting electrocardiogram, Doppler ultrasound measurements of ankle/arm blood pressure, and screening for nephropathy. At regular intervals, a timed 4-h urine is collected, lipid profiles are obtained, and stereoscopic fundus photographs are taken. In addition, dual B-mode Doppler ultrasound scans of the common and internal carotid arteries will be performed at years 1 and 6 and at study end.RESULTS-Written informed consent was obtained from 96% of the DCCT subjects. The participants, compared with nonparticipants, tended to have better glycemic control at the completion of the DCCT and were more likely to have their diabetes care provided by DCCT personnel. The EDIC baseline measurement stratified by sex delineates multiple cardiovascular disease risk factor differences such as age (older in men), waist-to-hip ratio (higher in men), HDL cholesterol (lower in men), hypertension (more prevalent in men), and maximum intimal-medial thickness of common and internal carotid arteries (thicker in men). Of the original conventional treatment group, 69% have changed to continuous subcutaneous insulin infusion or multiple daily injections. Although the mean HbA 1c difference between the intensive and conventional treatment groups narrowed at EDIC years 1 and 2, HbA 1c remained significantly lower in the intensive group. Of all expected clinic visits, 95% were completed, and the quality of EDIC data is very similar to that observed in the DCCT.CONCLUSIONS-Although obvious problems exist in extended follow-up studies of completed clinical trials, these are balanced by the value of continued systematic observation of the DCCT cohort. In contrast to other epidemiologic studies, EDIC will provide 1) definitive data on type 1 as distinct from type 2 diabetes; 2) reliance on prospective rather than on cross-sectional analysis; 3) long-term follow-up in a large population; 4) consistent use of objective, reliable measures of outcomes and glycemia; and 5) observation of patients from before the onset of complications. [3][4][5]. While the reduction of the earlier stages of diabetic complications could reasonably be expected to slow the evolution to end-stage complications, such as loss of vision or renal failure...
Background: Many CpGs become hyper or hypo-methylated with age. Multiple methods have been developed by Horvath et al. to estimate DNA methylation (DNAm) age including Pan-tissue, Skin & Blood, PhenoAge, and GrimAge. Pan-tissue and Skin & Blood try to estimate chronological age in the normal population whereas PhenoAge and GrimAge use surrogate markers associated with mortality to estimate biological age and its departure from chronological age. Here, we applied Horvath's four methods to calculate and compare DNAm age in 499 subjects with type 1 diabetes (T1D) from the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) study using DNAm data measured by Illumina EPIC array in the whole blood. Association of the four DNAm ages with development of diabetic complications including cardiovascular diseases (CVD), nephropathy, retinopathy, and neuropathy, and their risk factors were investigated. Results: Pan-tissue and GrimAge were higher whereas Skin & Blood and PhenoAge were lower than chronological age (p < 0.0001). DNAm age was not associated with the risk of CVD or retinopathy over 18-20 years after DNAm measurement. However, higher PhenoAge (β = 0.023, p = 0.007) and GrimAge (β = 0.029, p = 0.002) were associated with higher albumin excretion rate (AER), an indicator of diabetic renal disease, measured over time. GrimAge was also associated with development of both diabetic peripheral neuropathy (OR = 1.07, p = 9.24E−3) and cardiovascular autonomic neuropathy (OR = 1.06, p = 0.011). Both HbA1c (β = 0.38, p = 0.026) and T1D duration (β = 0.01, p = 0.043) were associated with higher PhenoAge. Employment (β = − 1.99, p = 0.045) and leisure time (β = − 0.81, p = 0.022) physical activity were associated with lower Pan-tissue and Skin & Blood, respectively. BMI (β = 0.09, p = 0.048) and current smoking (β = 7.13, p = 9.03E−50) were positively associated with Skin & Blood and GrimAge, respectively. Blood pressure, lipid levels, pulse rate, and alcohol consumption were not associated with DNAm age regardless of the method used. Conclusions: Various methods of measuring DNAm age are sub-optimal in detecting people at higher risk of developing diabetic complications although some work better than the others.
The transplantation of encapsulated islets of Langerhans is one approach to treat type 1 diabetes without the need of lifelong immunosuppression. Capillaries have been used for macroencapsulation because they have a favorable surface-to-volume ratio and because they can be refilled. It is unclear at present whether the outer surface of such capillaries should be smooth to prevent, or rough to promote, cell adhesions. In this study we tested a new capillary made of modified polysulfone (MWCO: 50 kDa) with a rough, open-porous outer surface for islet transplantation. Compared with free-floating islets, encapsulation of freshly isolated rat islets affected neither the kinetics nor the efficiency of glucose-induced insulin release in perifusion experiments. Free-floating islets maintained insulin secretion during cell culture but encapsulated islets gradually lost their glucose responsiveness and released VEGF. This indicated hypoxia in the capillary lumen. Transplantation of encapsulated rat islets into diabetic rats significantly reduced blood glucose concentrations from the first week of implantation. This hypoglycaemic effect persisted until explantation 4 weeks later. Transplantation of encapsulated porcine islets into diabetic rats reduced blood glucose concentrations depending on the islet purity. With semipurified islets a transient reduction of blood glucose concentrations was observed (2, 8, 18, 18 days) whereas with highly purified islets a sustained normoglycaemia was achieved (more than 28 days). Explanted capillaries containing rat islets were covered with blood vessels. Vascularization was also observed on capillaries containing porcine islets that were explanted from normoglycaemic rats. In contrast, on capillaries containing porcine islets that were explanted from hyperglycemic rats a fibrous capsule and lymphocyte accumulations were observed. No vascularization on the surface of transplanted capillaries was observed in the absence of islets. In conclusion, encapsulated islets can release VEGF, which appears to be an important signal for the vascularization of the capillary material. The rough, open-porous outer surface of the polysulfone capillary provides a site well suited for vascular tissue formation and may allow a prolonged islet function after transplantation.
The determination of islet mass is important for the normalization of islet experiments in the laboratory and for the precise dosing of islets for transplantation. The common microscopical analysis is based on individual islet sizing, calculation of the frequency distribution, and conversion into islet equivalents (IEQ), which is the volume of a spherical islet with a diameter of 150 µm. However, islets are of irregular form, which makes this determination user dependent, and the analysis is irreproducible once the original sample is discarded. This routine technique of islet quantification was compared with the analysis of areal density measurements. It was assumed that the entire area occupied by islets can be expressed in IEQ without sizing and counting individual islets. Porcine islets were isolated by continuous digestion/filtration and purified by gradient centrifugation. Purified islets were stained with dithizone and were repeatedly pictured under the microscope with random area selection. A total of 51 pictures was taken from 11 different purifications and stained islets were detected by digital image analysis. The correlation coefficient (r) between both analyses was 0.977 with an underestimation of islet yield by areal density detection (slope: 0.75 ± 0.03). Areal density analysis per picture took about 1 min, which is about 10 times faster than the traditional method without increasing the method error (CV 2.1% vs. 2.7%). In summary, areal density measurements allow a rapid and reproducible estimation of IEQ without counting individual islets. It can be performed in a single step analysis without computer programming and is valuable for online determinations of islet yield preceding transplantation.
The Diabetes Control and Complications Trial (DCCT) is a multicenter, randomized clinical trial studying the effects of two different diabetes regimens on the development and progression of early vascular complications in persons with insulin-dependent diabetes mellitus (IDDM). All of the centers have a Trial Coordinator. We administered a self-report questionnaire to each center to document the different activities for which the Trial Coordinator assumed responsibility in successfully orchestrating the trial. All Trial Coordinators were responsible primarily for recruitment, screening, medical management, education and training, and adherence and administration. Although documentation indicated that the Trial Coordinator was responsible for all of the above activities, the original applications reflected that very few of the Principal Investigators anticipated such a wide variety of duties. A Trial Coordinator was named in only 13 of the 21 applications and of these, only 6 actually assumed the position. This study points out the need to develop a means to define characteristics, background, and training appropriate for candidates for a Trial Coordinator position in future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.