The Phoenix mission investigated patterned ground and weather in the northern arctic region of Mars for 5 months starting 25 May 2008 (solar longitude between 76.5 degrees and 148 degrees ). A shallow ice table was uncovered by the robotic arm in the center and edge of a nearby polygon at depths of 5 to 18 centimeters. In late summer, snowfall and frost blanketed the surface at night; H(2)O ice and vapor constantly interacted with the soil. The soil was alkaline (pH = 7.7) and contained CaCO(3), aqueous minerals, and salts up to several weight percent in the indurated surface soil. Their formation likely required the presence of water.
The light detection and ranging instrument on the Phoenix mission observed water-ice clouds in the atmosphere of Mars that were similar to cirrus clouds on Earth. Fall streaks in the cloud structure traced the precipitation of ice crystals toward the ground. Measurements of atmospheric dust indicated that the planetary boundary layer (PBL) on Mars was well mixed, up to heights of around 4 kilometers, by the summer daytime turbulence and convection. The water-ice clouds were detected at the top of the PBL and near the ground each night in late summer after the air temperature started decreasing. The interpretation is that water vapor mixed upward by daytime turbulence and convection forms ice crystal clouds at night that precipitate back toward the surface.
The NOMAD ("Nadir and Occultation for MArs Discovery") spectrometer suite on board the ExoMars Trace Gas Orbiter (TGO) has been designed to investigate the comThis paper is dedicated to the memory of M. Allen, V. Formisano, and J. McConnell. position of Mars' atmosphere, with a particular focus on trace gases, clouds and dust. The detection sensitivity for trace gases is considerably improved compared to previous Mars missions, compliant with the science objectives of the TGO mission. This will allow for a major leap in our knowledge and understanding of the Martian atmospheric composition and the related physical and chemical processes. The instrument is a combination of three spectrometers, covering a spectral range from the UV to the mid-IR, and can perform solar occultation, nadir and limb observations. In this paper, we present the science objectives of the instrument and explain the technical principles of the three spectrometers. We also discuss the expected performance of the instrument in terms of spatial and temporal coverage and detection sensitivity.
The Rayleigh lidar technique has been applied to observe temperature fluctuations induced by gravity waves within the upper stratosphere. Observations were carried out on a routine basis for 1 year (130 clear nights) at the campus of York University near Toronto (44°N, 80°W). The waves were on occasion observed to induce marginal convective instability while exhibiting no substantial vertical amplitude growth. In general, the vertical variation in the amplitude of fractional temperature perturbations and associated available potential energy density implied the waves were strongly dissipated. Dramatic changes in the distribution of spectral energy with respect to vertical wave number were observed over the course of a few hours. The total resolved available potential energy in the gravity wave field varied considerably from day to day and seasonally with a winter maximum and summer minimum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.