Whatever the external loading, a crack front in a solid tries to reach mode I loading conditions after propagation. In mode I + II, the crack kinks to annihilate mode II, kinking angle being well predicted by the principle of local symmetry (PLS) or by the maximum tangential stress criterion (MTS). In presence of mode III, the problem becomes three-dimensional and the proposed propagation criterion are not yet well proved and established. In particular in three point bending experiments (3PB) with an initially inclined crack, the crack twists around the direction of propagation to finally reach a situation of pure mode I. The aim of the paper is to compare the propagation paths predicted by two different criteria for 3PB fatigue experiments performed on PMMA. The first criterion developed by Schollmann et al. (Int J Fract 117(2):129-141, 2002), is a three-dimensional extension of the MTS criterion and predicts the local angles that annihilates mode II and III at each point of the front. The second one developed by Lazarus et al. (J Mech Phys Solids 49 (7): 1421-1443, 2001b), predicts an abrupt and then progressive twisting of the front to annihilate mode III. Due to presence of sign changing mode II and almost uniform mode III in the experiments, both criteria give good results. However, since mode III is predominant over mode II in the case under consideration, the global criterion gives better results. Nevertheless, the local type criterion seems to be of greater universality for practical engineering applications.Keywords Brittle fracture · Mode II · Mode III · Maximum tangential stress criterion · 3D crack propagation path · 3D fracture criteria · LEFM
In this work laser-welded tube-tube specimens made of aluminium alloys AlMg3.5Mn and AlSi1MgMn T6 were experimentally tested under constant and variable amplitude loading, under pure axial and pure torsion loading.In order to evaluate the influence on fatigue behaviour of the residual stresses, because of the welding process, some specimens were subjected to postweld heat treatment and then were tested. The numerical analyses, using finite element (FE), were carried out to obtain a reliable estimation of the residual stress in the specimen. The numerical results were in a good agreement with experimental ones obtained by means of hole-drilling method. Finally, the residual stress distribution was superimposed to stress distribution because of fatigue loads obtained by FE analyses applying local concept, to calculate the stresses in the crack initiation zone and to understand the different types of failure that occurred in as-welded and relieved specimens.aluminium, constant amplitude loading, fatigue, finite element method, residual stress, variable amplitude, welded joint
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.