The aim of the study was to determine the effect of butyrate infusion into the rumen on butyrate flow to the duodenum, expression of short-chain fatty acid (SCFA) transporters (monocarboxylate transporter-1, -2, and -4) and receptors (G protein coupled receptor-41 and -43) in the duodenal epithelium and nutrient digestion in sheep. Eight wethers (39.0 ± 3.00 kg; mean ± SD) with ruminal and T-shape duodenal cannulas were allocated to 4 × 4 replicated Latin square design with each experimental period lasting for 21 d (12 d of adaptation and 9 d for data and sample collection). Experimental treatments were: 1) distilled water infusion into the rumen (CONT); 2) 15 g/d of butyric acid infusion into the rumen (BUT15); 3) 30 g/d of butyric acid infusion into the rumen (BUT30); and 4) 45 g/d of butyric acid infusion into the rumen (BUT45). The daily dose of butyrate was infused into the rumen via the rumen cannula, with 200 mL of solution of butyric acid and distilled water, at a constant rate (0.1389 mL/min) throughout the day using a peristaltic pump. Correspondingly, 200 mL/d of distilled water was infused into the rumen of CONT. The wethers were fed daily 900 g of chopped meadow hay and 200 g of concentrate in two equal meals at 0600 and 1800 h. Butyrate infusion into the rumen did not affect total SCFA concentration in the rumen fluid ( > 0.11). Molar proportion of butyrate in total SCFA linearly increased, and molar proportion of acetate and isovalerate linearly decreased ( ≤ 0.02) with an increasing amount of butyrate infused into the rumen. The molar proportion of butyrate in total SCFA in the duodenal digesta linearly increased ( < 0.01), and butyrate flow to duodenum tended to linearly increase ( = 0.06) with an increasing dose of exogenous butyrate delivered to the rumen. Butyrate infusion into the rumen did not affect ( ≥ 0.14) the mRNA expression of monocarboxylate transporter-2 and -4 and G protein coupled receptor-43 in the duodenal epithelium. The G protein coupled receptor-41 and monocarboxylate transporter-1 mRNA expression in the duodenal epithelium was very low in many of the analyzed samples. Digestibility of organic matter, neutral detergent fiber, and acid detergent fiber in the stomach (forestomach and abomasum) decreased for BUT15 and BUT30 and then increased for BUT45 (quadratic, ≤ 0.04); however, neither digestibility in the intestine nor total tract digestibility differed between treatments ( ≥ 0.10).
The exact causes of failure of anterior cruciate ligament (ACL) reconstruction are still unknown. A key to successful ACL reconstruction is the prevention of bone tunnel enlargement (BTE). In this study, a new strategy to improve the outcome of ACL reconstruction was analyzed using a bioresorbable polylactide (PLA) stent as a catalyst for the healing process. The study included 24 sheep with 12 months of age. The animals were randomized to the PLA group (n = 16) and control group (n = 8), subjected to the ACL reconstruction with and without the implantation of the PLA tube, respectively. The sheep were sacrificed 6 or 12 weeks post-procedure, and their knee joints were evaluated by X-ray microcomputed tomography with a 50 µm resolution. While the analysis of tibial and femoral tunnel diameters and volumes demonstrated the presence of BTE in both groups, the enlargement was less evident in the PLA group. Also, the microstructural parameters of the bone adjacent to the tunnels tended to be better in the PLA group. This suggested that the implantation of a bioresorbable PLA tube might facilitate osteointegration of the tendon graft after the ACL reconstruction. The beneficial effects of the stent were likely associated with osteogenic and osteoconductive properties of polylactide.2 of 20 to be optimal and complication-free [1][2][3]. The failures of ACL reconstruction might be associated with an inappropriate orientation of bone tunnels, use of improper fixation methods and materials, and inadequate rehabilitation, as well as with mechanical behavior of the bone and biological processes that occur during remodeling, maturation, and incorporation of the graft [4,5]. The healing potential of a newly implanted graft is relatively low [6][7][8] and is primarily determined by conditions within proximity of the bone tunnel and soft tissue of the graft, including the intra-articular environment. Osteointegration of the tendon grafts used for ACL reconstruction is still far from satisfactory, although several strategies have been postulated to improve the process [9][10][11][12][13][14][15][16][17][18][19].Another critical determinant of successful ACL reconstruction is the prevention of bone tunnel enlargement (BTE), a phenomenon of mechanical and biological etiology. The mechanical causes of BTE might be related to the tunnel drilling technique, graft fixation technique, vibrations at the tunnel entry, and movements of the graft referred to as "bungee effect" and "windshield wiper effect" [20][21][22][23][24][25]. The biological mechanisms involved in the BTE include accumulation of intra-articular fluid, which penetrates to the space between the graft and the wall of the bone tunnel. The sites in which the graft is not adjacent closely to the bone tunnel wall, the so-called "dead space", are particularly prone to fluid accumulation. The intra-articular fluid that accumulates after the ACL rupture contains proinflammatory cytokines, which are responsible for local osteolysis [26][27][28][29]. Another biological mechanism ...
The aim of the work was to evaluate the in vivo biological behaviour of polymeric membrane materials for glaucoma implants. The base material was biostable synthetic terpolymer (PTFE–PVDF–PP) with proved biocompability (PN-EN ISO 10993). The samples manufactured in the form a membrane were subjected to chemical and physical treatment to create an open pore system within the polymer matrix. As a porogenic phase biodegradable natrium alginate in a fibrous form was employed. The non-perforating deep sclerectomy technique was performed in a rabbit model. The clinical observations were made after 14 and 30 days. During the study clinical symptoms of a moderate degree were observed, and histopathological changes were typical for foreign body implantation. At the end stage of the study no significant difference in histopathological assessment was found between control and experimental group. Similarities observed in both groups and relatively mild histopathological changes in the tissue surrounding the implant indicate that the observed symptoms come from a deep scleral trauma caused by surgery, and not by the presence of the implant itself.
In this study we aimed to assess the in vivo osteoinductive properties of two composite scaffolds made of PLGA (poly-L-lactide-co-glycolide) and two types of gel-derived bioactive glasses, namely a high silica S2 bioactive glass (S2-PLGA composites) or high lime A2 bioactive glass (A2-PLGA composites). To achieve that, the potential of the composites to induce ectopic bone formation in a rabbit muscle has been examined along with the control PLGA scaffold. Cylinder-like scaffolds of 7 × 3 mm (width × height) were implanted into pouches created in the latissimus dorsi muscle of 18 New Zealand rabbits. The tissue sections were obtained at 6, 12 or 24 weeks post-surgery (six rabbits per each time point) and stained with hematoxylin-eosin. The process of wound healing, the formation of collagen-rich connective tissue and its transition to cartilage were examined by Sirius red and Alcian blue histological stainings. We also performed immunohistochemical verification of the presence of osteoblast- and osteoclast- like cells in the vicinity of the scaffolds. A typical foreign body reaction and wound healing process was observed for all implanted scaffolds. Osteoblast- and osteoclast-like cells were observed in the vicinity of the scaffolds as determined by the immunohistochemical staining for Osteocalcin, BMP-2 and Cathepsin K. Compared to plain PLGA scaffolds, numerous osteoblast-like cells were observed 12 weeks post implantation near the composites and the scaffolds gradually degraded as bone formation proceeded. S2-PLGA and A2-PLGA composites display osteoinductive properties in vivo. Furthermore, they are more effective at inducing ectopic bone formation in a rabbit muscle compared to plain PLGA. Thus these SBG-PLGA composite scaffolds have potential for clinical applications in dental and/or orthopedic-bone tissue engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.