The on-demand preparation of higher-order Fock states is of fundamental importance in quantum information sciences. We propose and compare different protocols to generate higher-order Fock states in solid state quantum-dot-cavity systems. The protocols make use of a series of laser pulses to excite the quantum dot exciton and off-resonant pulses to control the detuning between dot and cavity. Our theoretical studies include dot and cavity loss processes as well as the pure-dephasing type coupling to longitudinal acoustic phonons in a numerically complete fashion. By going beyond the two-level approximation for quantum dots, we study the impact of a finite exchange splitting, the impact of a higher energetic exciton state, and an excitation with linearly polarized laser pulses leading to detrimental occupations of the biexciton state. We predict that under realistic conditions, a protocol which keeps the cavity at resonance with the quantum dot until the desired target state is reached is able to deliver fidelities to the Fock state |5 well above 40%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.