Abstract-The estimates of the age of the Kaali impact structure
Several models of shatter cone formation require a heterogeneity at the cone apex of high impedance mismatch to the surrounding bulk rock. This heterogeneity is the source of spherically expanding waves that interact with the planar shock front or the following release wave. While these models are capable of explaining the overall conical shape of shatter cones, they are not capable of explaining the subcone structure and the diverging and branching striations that characterize the surface of shatter cones and lead to the so‐called horse‐tailing effect. Here, we use the hierarchical arrangement of subcone ridges of shatter cone surfaces as key for understanding their formation. Tracing a single subcone ridge from its apex downward reveals that each ridge branches after some distance into two symmetrically equivalent subcone ridges. This pattern is repeated to form new branches. We propose that subcone ridges represent convex‐curved fracture surfaces and their intersection corresponds to the bifurcation axis. The characteristic diverging striations are interpreted as the intersection lineations delimiting each subcone. Multiple symmetric crack branching is the result of rapid fracture propagation that may approach the Raleigh wave speed. We present a phenomenological model that fully constructs the shatter cone geometry to any order. The overall cone geometry including apex angle of the enveloping cone and the degree of concavity (horse‐tailing) is largely governed by the convexity of the subcone ridges. Straight cones of various apical angles, constant slope, and constant bifurcation angles form if the subcone convexity is low (30°). Increasing subcone convexity leads to a stronger horse‐tailing effect and the bifurcation angles increase with increasing distance from the enveloping cone apex. The model predicts possible triples of enveloping cone angle, bifurcation angle, and subcone angle. Measurements of these quantities on four shatter cones from different impact structures and lithologies agree well with model predictions.
This paper reviews major findings of the Multidisciplinary Experimental and Modeling Impact Crater Research Network (MEMIN). MEMIN is a consortium, funded from 2009 till 2017 by the German Research Foundation, and is aimed at investigating impact cratering processes by experimental and modeling approaches. The vision of this network has been to comprehensively quantify impact processes by conducting a strictly controlled experimental campaign at the laboratory scale, together with a multidisciplinary analytical approach. Central to MEMIN has been the use of powerful two‐stage light‐gas accelerators capable of producing impact craters in the decimeter size range in solid rocks that allowed detailed spatial analyses of petrophysical, structural, and geochemical changes in target rocks and ejecta. In addition, explosive setups, membrane‐driven diamond anvil cells, as well as laser irradiation and split Hopkinson pressure bar technologies have been used to study the response of minerals and rocks to shock and dynamic loading as well as high‐temperature conditions. We used Seeberger sandstone, Taunus quartzite, Carrara marble, and Weibern tuff as major target rock types. In concert with the experiments we conducted mesoscale numerical simulations of shock wave propagation in heterogeneous rocks resolving the complex response of grains and pores to compressive, shear, and tensile loading and macroscale modeling of crater formation and fracturing. Major results comprise (1) projectile–target interaction, (2) various aspects of shock metamorphism with special focus on low shock pressures and effects of target porosity and water saturation, (3) crater morphologies and cratering efficiencies in various nonporous and porous lithologies, (4) in situ target damage, (5) ejecta dynamics, and (6) geophysical survey of experimental craters.
Shatter cones are the only macroscopic feature considered as evidence for shock metamorphism. Their presence is diagnostic for the discovery and verification of impact structures. The occurrence of shatter cones is heterogeneous throughout the crater record and their geometry can diverge from the typical cone shape. The precise formation mechanism of shatter cones is still not resolved. In this study, we aim at better constraining the boundary conditions of shatter cone formation in impact experiments and test a novel approach to qualitatively and quantitatively describe shatter cone geometries by white light interferometry. We recovered several ejected fragments from MEMIN cratering experiments that show slightly curved, striated surfaces and conical geometries with apices of 36°–52°. These fragments fulfilling the morphological criteria of shatter cones were found in experiments with 20–80 cm sized target cubes of sandstone, quartzite and limestone, but not in highly porous tuff. Targets were impacted by aluminum, steel, and iron meteorite projectiles at velocities of 4.6–7.8 km s−1. The projectile sizes ranged from 2.5–12 mm in diameter and produced experimental peak pressures of up to 86 GPa. In experiments with lower impact velocities shatter cones could not be found. A thorough morphometric analysis of the experimentally generated shatter cones was made with 3D white light interferometry scans at micrometer accuracy. SEM analysis of the surfaces of recovered fragments showed vesicular melt films alternating with smoothly polished surfaces. We hypothesize that the vesicular melt films predominantly form at strain releasing steps and suggest that shatter cones are probably mixed mode fractures.
The 26 km diameter Nördlinger Ries is a complex impact structure with a ring structure that resembles a peak ring. A first research drilling through this “inner crystalline ring” of the Ries was performed at the Erbisberg hill (SW Ries) to better understand the internal structure and lithology of this feature, and possibly reveal impact‐induced hydrothermal alteration. The drill core intersected the slope of a 22 m thick postimpact travertine mound, before entering 42 m of blocks and breccias of crystalline rocks excavated from the Variscan basement at >500 m depth. Weakly shocked gneiss blocks that show that shock pressure did not exceed 5 GPa occur above polymict lithic breccias of shock stage Ia (10–20 GPa), with planar fractures and planar deformation features (PDFs) in quartz. Only a narrow zone at 49.20–50.00 m core depth exhibits strong mosaicism in feldspar and {10true1false¯2} PDFs in quartz, which are indicative of shock stage Ib (20–35 GPa). Finally, 2 m of brecciated Keuper sediments at the base of the section point to an inverse layering of strata. While reverse grading of clast sizes in lithic breccias and gneiss blocks is consistent with lateral transport, the absence of diaplectic glass and melt products argues against dynamic overthrusting of material from a collapsing central peak, as seen in the much larger Chicxulub structure. Indeed, weakly shocked gneiss blocks are rather of local provenance (i.e., the transient crater wall), whereas moderately shocked polymict lithic breccias with geochemical composition and 87Sr/86Sr signature similar to Ries suevite were derived from a position closer to the impact center. Thus, the inner ring of the Ries is formed by moderately shocked polymict lithic breccias likely injected into the transient crater wall during the excavation stage and weakly shocked gneiss blocks of the collapsing transient crater wall that were emplaced during the modification stage. While the presence of an overturned flap is not evident from the Erbisberg drilling, a survey of all drillings at or near the inner ring point to inverted strata throughout its outer limb. Whether the central ring of the Ries represents remains of a collapsed central peak remains to be shown. Postimpact hydrothermal alteration along the Erbisberg section comprises chloritization, sulfide veinlets, and strong carbonatization. In addition, a narrow zone in the lower parts of the polymict lithic breccia sequence shows a positive Eu anomaly in its carbonate phase. The surface expression of this hydrothermal activity, i.e., the travertine mound, comprises subaerial as well as subaquatic growth phases. Intercalated lake sediments equivalent to the early parts of the evolution of the central crater basin succession confirm a persistent impact‐generated hydrothermal activity, although for less time than previously suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.