Abstract. Understanding natural and anthropogenic climate change processes involves using computational models that represent the main components of the Earth system: the atmosphere, ocean, sea ice, and land surface. These models have become increasingly computationally expensive as resolution is increased and more complex process representations are included. However, to gain robust insight into how climate may respond to a given forcing, and to meaningfully quantify the associated uncertainty, it is often required to use either or both ensemble approaches and very long integrations. For this reason, more computationally efficient models can be very valuable tools. Here we provide a comprehensive overview of the suite of climate models based around the HadCM3 coupled general circulation model. This model was developed at the UK Met Office and has been heavily used during the last 15 years for a range of future (and past) climate change studies, but has now been largely superseded for many scientific studies by more recently developed models. However, it continues to be extensively used by various institutions, including the BRIDGE (Bristol Research Initiative for the Dynamic Global Environment) research group at the University of Bristol, who have made modest adaptations to the base HadCM3 model over time. These adaptations mean that the original documentation is not entirely representative, and several other relatively undocumented configurations are in use. We therefore describe the key features of a number of configurations of the HadCM3 climate model family, which together make up HadCM3@Bristol version 1.0. In order to differentiate variants that have undergone development at BRIDGE, we have introduced the letter B into the model nomenclature. We include descriptions of the atmosphere-only model (HadAM3B), the coupled model with a low-resolution ocean (HadCM3BL), the high-resolution atmosphere-only model (HadAM3BH), and the regional model (HadRM3B). These also include three versions of the land surface scheme. By comparing withPublished by Copernicus Publications on behalf of the European Geosciences Union. observational datasets, we show that these models produce a good representation of many aspects of the climate system, including the land and sea surface temperatures, precipitation, ocean circulation, and vegetation. This evaluation, combined with the relatively fast computational speed (up to 1000 times faster than some CMIP6 models), motivates continued development and scientific use of the HadCM3B family of coupled climate models, predominantly for quantifying uncertainty and for long multi-millennial-scale simulations.
We describe the scientific and technical implementation of two models for a core set of experiments contributing to the sixth phase of the Coupled Model Intercomparison Project (CMIP6). The models used are the physical atmosphere-land-ocean-sea ice model HadGEM3-GC3.1 and the Earth system model UKESM1 which adds a carbon-nitrogen cycle and atmospheric chemistry to HadGEM3-GC3.1. The model results are constrained by the external boundary conditions (forcing data) and initial conditions. We outline the scientific rationale and assumptions made in specifying these. Notable details of the implementation include an ozone redistribution scheme for prescribed ozone simulations (HadGEM3-GC3.1) to avoid inconsistencies with the model's thermal tropopause, and land use change in dynamic vegetation simulations (UKESM1) whose influence will be subject to potential biases in the simulation of background natural vegetation. We discuss the implications of these decisions for interpretation of the simulation results. These simulations are expensive in terms of human and CPU resources and will underpin many further experiments; we describe some of the technical steps taken to ensure their scientific robustness and reproducibility. Plain Language SummaryComplex models of the Earth system are valuable tools for understanding the processes responsible for our changing climate. The Coupled Model Intercomparison Project (CMIP) is a well-established activity of the World Climate Research Programme that brings together results from these models to better understand their process representation and to pool their projections for robust understanding of future climate pathways. The latest phase of CMIP (CMIP6) is larger and more ambitious than previous phases. We detail the setup of two U.K. models (HadGEM3-GC3.1 and UKESM1) for a core set of experiments contributing to CMIP6, including simulations of historical and future periods covering 1850 to 2300. We highlight assumptions made in applying the prescribed CMIP6 input data to these models. We outline the technical steps to ensure the reproducibility of these simulations.
Abstract. FAMOUS fills an important role in the hierarchy of climate models, both explicitly resolving atmospheric and oceanic dynamics yet being sufficiently computationally efficient that either very long simulations or large ensembles are possible. An improved set of carbon cycle parameters for this model has been found using a perturbed physics ensemble technique. This is an important step towards building the "Earth System" modelling capability of FAMOUS, which is a reduced resolution, and hence faster running, version of the Hadley Centre Climate model, HadCM3. Two separate 100 member perturbed parameter ensembles were performed; one for the land surface and one for the ocean.The land surface scheme was tested against present-day and past representations of vegetation and the ocean ensemble was tested against observations of nitrate. An advantage of using a relatively fast climate model is that a large number of simulations can be run and hence the model parameter space (a large source of climate model uncertainty) can be more thoroughly sampled. This has the associated benefit of being able to assess the sensitivity of model results to changes in each parameter. The climatologies of surface and tropospheric air temperature and precipitation are improved relative to previous versions of FAMOUS. The improved representation of upper atmosphere temperatures is driven by improved ozone concentrations near the tropopause and better upper level winds.
We assess the effective radiative forcing due to ozone-depleting substances using models participating in the Aerosols and Chemistry and Radiative Forcing Model Intercomparison Projects (AerChemMIP, RFMIP). A large intermodel spread in this globally averaged quantity necessitates an "emergent constraint" approach whereby we link the radiative forcing to ozone declines measured and simulated during 1979-2000, excluding two volcanically perturbed periods. During this period, ozone-depleting substances were increasing, and several merged satellite-based climatologies document the ensuing decline of total-column ozone. Using these analyses, we find an effective radiative forcing of −0.05 to 0.13 W m −2. Our best estimate (0.04 W m −2) is on the edge of the "likely" range given by the Fifth Assessment Report of IPCC of 0.03 to 0.33 W m −2 but is in better agreement with two other literature results. Plain Language Summary Chloroflourocarbons and other compounds involved in ozone depletion are also powerful greenhouse gases, but their contribution to global warming is reduced due to the cooling effect of the ozone loss which they induce. Models informing an upcoming climate report disagree on the ozone loss and thus on the climate influence of these gases. Here we use observed ozone loss to reduce the resultant uncertainty in their overall climate influence and infer a smaller warming influence of these substances than was considered likely in a 2013 climate report. The result implies a smaller benefit to climate due to their phase-out, mandated under the Montreal Protocol, than would have been the case under previous understanding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.