The RYR1 gene, which encodes the sarcoplasmic reticulum calcium release channel or type 1 ryanodine receptor (RyR1) of skeletal muscle, was sequenced in 1988 and RYR1 variations that impair calcium homeostasis and increase susceptibility to malignant hyperthermia were first identified in 1991. Since then, RYR1-related myopathies (RYR1-RM) have been described as rare, histopathologically and clinically heterogeneous, and slowly progressive neuromuscular disorders. RYR1 variants can lead to dysfunctional RyR1-mediated calcium release, malignant hyperthermia susceptibility, elevated oxidative stress, deleterious post-translational modifications, and decreased RyR1 expression. RYR1-RM-affected individuals can present with delayed motor milestones, contractures, scoliosis, ophthalmoplegia, and respiratory insufficiency.Historically, RYR1-RM-affected individuals were diagnosed based on morphologic features observed in muscle biopsies including central cores, cores and rods, central nuclei, fiber type disproportion, and multi-minicores. However, these histopathologic features are not always specific to RYR1-RM and often change over time. As additional phenotypes were associated with RYR1 variations (including King-Denborough syndrome, exercise-induced rhabdomyolysis, lethal multiple pterygium syndrome, adult-onset distal myopathy, atypical periodic paralysis with or without myalgia, mild calf-predominant myopathy, and dusty core disease) the overlap among diagnostic categories is ever increasing. With the continuing emergence of new clinical subtypes along the RYR1 disease spectrum and reports of adult-onset phenotypes, nuanced nomenclatures have been reported (RYR1- [related, related congenital, congenital] myopathies). In this narrative review, we provide historical highlights of RYR1 research, accounts of the main diagnostic disease subtypes and propose RYR1-related disorders (RYR1-RD) as a unified nomenclature to describe this complex and evolving disease spectrum.
Ryanodine receptor isoform-1 (RyR1) is a major calcium channel in skeletal muscle important for excitation-contraction coupling. Mutations in the RYR1 gene yield RyR1 protein dysfunction that manifests clinically as RYR1-related congenital myopathies (RYR1-RM) and/or malignant hyperthermia susceptibility (MHS). Individuals with RYR1-RM and/or MHS exhibit varying symptoms and severity. The symptoms impair quality of life and put patients at risk for early mortality, yet the cause of varying severity is not well understood. Currently, there is no Food and Drug Administration (FDA) approved treatment for RYR1-RM. Discovery of effective treatments is therefore critical, requiring knowledge of the RyR1 pathway. The purpose of this review is to compile work published to date on the RyR1 pathway and to implicate potential regions as targets for treatment. The RyR1 pathway is comprised of protein-protein interactions, protein-ligand interactions, and post-translational modifications, creating an activation/regulatory macromolecular complex. Given the complexity of this pathway, we divided these interactions and modifications into six regulatory groups. Three of several RyR1 interacting proteins, FK506-binding protein 12 (FKBP12), triadin, and calmodulin, were identified as playing important roles across all groups and may serve as promising target sites for treatment. Also, variability in disease severity may be influenced by prolongation or hyperactivity of post-translational modifications resulting from RyR1 dysfunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.