Low temperature covalent direct wafer-wafer bonding allows for the fusion of multiple semiconductor wafers without any additional material at the bonding interface. In the context of particle pixel detectors this might provide an alternative to bump-bonding for joining sensors to readout chips. Previous investigations have shown that the amorphous layer formed at the interface during bonding is detrimental to charge propagation. To investigate the influence of the bonding interface on signal collection we have fabricated custom test structures by bonding high-resistivity N to high-resistivity P-type silicon wafers thus forming P-N junctions. Scanning transmission electron microscopy shows indeed the formation of ca. 3 nm wide amorphous layer at the interface. Using a scanning transient current technique (TCT) setup we were able to record generated signals. Illuminating our sample with light of different wavelengths and from different sides, indicates that the P side of the bonded structures can be fully depleted, but not the N side. This indicates a strongly asymmetric depletion behaviour which we attribute to the presence of the bonding interface.
Plastic scintillator detectors are used in high energy physics as well as for diagnostic imaging in medicine, beam monitoring on hadron therapy, muon tomography, dosimetry and many security applications. To combine particle tracking and calorimetry it is necessary to build detectors with three-dimensional granularity, i.e. small voxels of scintillator optically isolated from each other. Recently, the 3DET collaboration demonstrated the possibility to 3D print polystyrene-based scintillators with a light output performance close to that obtained with standard production methods. In this article, after providing a further characterization of the developed scintillators, we show the first matrix of plastic scintillator cubes optically separated by a white reflector material entirely 3D printed with fused deposition modeling. This is a major milestone towards the 3D printing of the first real particle detector. A discussion of the results as well as the next steps in the R&D is also provided.
Inorganic scintillators are widely used for scientific, industrial and medical applications. The development of 3D printing with inorganic scintillators would allow the fast creation of detector prototypes for the registration of ionizing radiation, such as alpha, beta and gamma particles in thin layers of active material, and X-ray radiation. This article reports on the technical work and scientific achievements that aimed at developing a new inorganic scintillation filament to be used for the 3D printing of composite scintillator materials: study and definition of the scintillator composition; development of the methods for the inorganic scintillator filament production and further implementation in the available 3D printing technologies; study of the impact of the different 3D printing modes on the material scintillation characteristics. Also, 3D-printed scintillators can be used to produce combined detectors for high-energy physics.
In the context of particle detectors, low-temperature covalent wafer-wafer bonding allows for integration of high-Z materials as absorbing layers with readout chips produced in standard CMOS processes. This enables for instance the fabrication of novel highly efficient X-ray imaging sensors. In order to investigate the effects of the covalent bonding on the signal generated in such sensors, wafer-wafer bonded silicon-silicon P-N pad diodes have previously been produced. The behaviour of these test samples is being investigated with transient current technique (TCT) measurements. In this paper we present an overview of the TCT setup as well as a custom sandwich-type sample holder used for these measurements. A review of the results presented in a previous paper shows, that the bonded P-N structures show a highly asymmetric depletion behaviour under reverse bias. IR edge TCT measurements confirm that only the P-side of the samples is being depleted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.