The fate of benzene, ethylbenzene, toluene, xylenes (BTEX) compounds through biodegradation was investigated using two different bacteria, Ralstonia picketti (BP-20) and Alcaligenes piechaudii (CZOR L-1B). These bacteria were isolated from extremely polluted soils contaminated with petroleum hydrocarbons. PCR and Fatty Acid Methyl Ester (FAME) were used to identify the isolates. In this study, BTEX biodegradation, applied as a mixture or as individual compounds by the bacteria was evaluated. Both bacteria were shown to degrade each of the BTEX compounds individually and in mixture. However, Alcaligenes piechaudii was a better degrader of BTEXs both in the mixture and individually. Differences between BTEX biodegradation in the mixture and individually were observed, especially in the case of benzene. The degradation of all BTEXs in the mixture was lower than the degradation of individual compounds for both bacteria tested. In the all experiments, toluene and m + p-xylenes were better removed than the other BTEXs. No intermediates of biodegradation were detected. Biosurfactant production was observed by culture techniques. In addition, 3-hydroxy fatty acids, important in biosurfactant production, were observed by FAME analysis. The test results indicate that the bacteria could contribute to bioremediation of aromatic hydrocarbon pollution.
The studies on elemental carbon content in the atmospheric air, performed at the air monitoring station in Katowice (Poland), have revealed violations of allowable maximum average annual and diurnal concentrations. Elemental carbon is introduced into the atmosphere mainly as soot generated from combustion processes. This work presents the determination of elemental carbon in emission generated from coal combustion processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.