A system is in a self-organized critical state if the distribution of some measured events obeys a power law. The finite-size scaling of this distribution with the lattice size is usually enough to assume that the system displays self-organized criticality. This approach, however, can be misleading. In this paper we analyze the behavior of the branching rate sigma of the events to establish whether a system is in a critical state. We apply this method to the Olami-Feder-Christensen model to obtain evidence that, in contrast to previous results, the model is critical in the conservative regime only.
In random matrix theory, the Tracy-Widom (TW) distribution describes the behavior of the largest eigenvalue. We consider here two models in which TW undergoes transformations. In the first one disorder is introduced in the Gaussian ensembles by superimposing an external source of randomness. A competition between TW and a normal (Gaussian) distribution results, depending on the spreading of the disorder. The second model consists of removing at random a fraction of (correlated) eigenvalues of a random matrix. The usual formalism of Fredholm determinants extends naturally. A continuous transition from TW to the Weilbull distribution, characteristic of extreme values of an uncorrelated sequence, is obtained.
It is shown that the families of generalized matrix ensembles recently considered which give rise to an orthogonal invariant stable Lévy ensemble can be generated by the simple procedure of dividing Gaussian matrices by a random variable. The nonergodicity of this kind of disordered ensembles is investigated. It is shown that the same procedure applied to random graphs gives rise to a family that interpolates between the Erdös-Renyi and the scale free models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.