In the present work, the thermogravimetric analysis-Fourier transform infared spectroscopy (TGA-FTIR) system was employed to investigate the co-pyrolysis behavior of oil shale (OS) semi-coke (SC) and furfural residue (FR). Results indicated that the addition of furfural residue improved the pyrolysis characteristics of blends, while synergy behaved differently with the variation of the mixing proportion. Semi-coke could act as a catalyst for the furfural residue pyrolysis and facilitated the release of hydroxyl, but slightly inhibited the release of CO 2 and CH 4 . The optimal blending ratio of oil shale semi-coke to furfural residue was 1:1. Besides, kinetic parameters were calculated using model-free methods, declaring that the sample pyrolysis was a multi-process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.