Composite materials were processed by casting a mixture of aqueous suspensions of latex and microfibrils. These microfibrils, or whiskers, are extracted from a sea animal and are monocrystals of cellulose, with an aspect ratio around 100 and an average diameter of 20 nm. It has been found that the mechanical properties (shear modulus) are increased by more than two orders of magnitude in the rubbery state of the polymeric matrix, when the whisker content was 6% (w/w). This very large effect is discussed on the basis of different types of mechanical models and it is concluded that these whiskers form a rigid network, probably linked by hydrogen bonds. The formation of this network is assumed to be governed by a percolation mechanism.
Nanocomposites obtained by casting a mixture of a latex and a n aqueous suspension of cellulose whiskers have been studied. Their mechanical properties (e.g. shear modulus) are found to increase by more than three orders of magnitude in the rubbery state of the polymer matrix, when the whisker content is 6 wt%. This large and unusual effect is discussed on the basis of different types of mechanical models, including semi-phenomenological and numerical finite element calculations. It is concluded that cellulose whiskers form a rigid network linked by hydrogen bonds. The formation of this network is assumed to be governed by a percolation mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.