An ultrasonic reflectivity method is proposed for measuring porosity and tortuosity of porous materials having a rigid frame. Porosity is the relative fraction by volume of the air contained within a material. Tortuosity is a geometrical parameter which intervenes in the description of the inertial effects between the fluid filled the porous material and its structure at high frequency range. It is generally easy to evaluate the tortuosity from transmitted waves, this is not the case for porosity because of its weak sensitivity in transmitted mode. The proposed method is based on measurement of reflected wave by the first interface of a slab of rigid porous material. This method is obtained from a temporal model of the direct and inverse scattering problems for the propagation of transient ultrasonic waves in a homogeneous isotropic slab of porous material having a rigid frame [Z. E. A. Fellah, M. Fellah, W. Lauriks, and C. Depollier, J. Acoust. Soc. Am. 113, 61 (2003)]. Reflection and transmission scattering operators for a slab of porous material are derived from the responses of the medium to an incident acoustic pulse at oblique incidence. The porosity and tortuosity are determined simultaneously from the measurements of reflected waves at two oblique incidence angles. Experimental and numerical validation results of this method are presented.
An ultrasonic reflectivity method of evaluating the acoustic parameters of porous materials saturated by air (or any other gas) is discussed. The method is based on experimental detection of waves reflected at normal incidence by the first and second interface of the material. This method is based on a temporal model of direct and inverse scattering problems for the propagation of transient ultrasonic waves in a homogeneous isotropic slab of porous material with a rigid frame [Fellah et al., J. Acoust. Soc. Am. 113, 61-73 (2003)]. Generally, the conventional ultrasonic approach can be used to determine tortuosity, and viscous and thermal characteristic lengths via transmitted waves. Porosity cannot be estimated in transmitted mode because of its very weak sensitivity. First interface use of the reflected wave at oblique incidence leads to the determination of porosity and tortuosity [Fellah et al., J. Acoust. Soc. Am. 113, 2424-2433 (2003)] but this is not possible at normal incidence. Using experimental data of reflected waves by the first and second interface at normal incidence simultaneously leads to the determination of porosity, tortuosity, viscous and thermal characteristic lengths. As with the classic ultrasonic approach for characterizing porous material saturated with one gas, both characteristic lengths are estimated individually by assuming a given ratio between them. Tests are performed using weakly resistive industrial plastic foams. Experimental and numerical results, and prospects are discussed.
Ultrasonic wave propagation in human cancellous bone is considered. Reflection and transmission coefficients are derived for a slab of cancellous bone having an elastic frame using Biot's theory modified by the model of Johnson et al. [J. Fluid Mech. 176, 379-402 (1987)] for viscous exchange between fluid and structure. Numerical simulations of transmitted waves in the time domain are worked out by varying the modified Biot parameters. The variation is applied to the governing parameters and is about 20%. From this study, we can gain an insight into the sensitivity of each physical parameter used in this theory. Some parameters play an important role in slow-wave wave form, such as the viscous characteristic length lambda and pore fluid bulk modulus Kf. However, other parameters play an important role in the fast-wave wave form, such as solid density rhos and shear modulus N. We also note from these simulations that some parameters such as porosity phi, tortuosity alpha(infinty), thickness, solid bulk modulus Ks, and skeletal compressibility frame Kb, play an important role simultaneously in both fast and slow wave forms compared to other parameters which act on the wave form of just one of the two waves. The sensitivity of the modified Biot parameters with respect to the transmitted wave depends strongly on the coupling between the solid and fluid phases of the cancellous bone. Experimental results for slow and fast waves transmitted through human cancellous bone samples are given and compared with theoretical predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.