A Zn-based coating with durable hydrophobicity and good corrosion resistance was formed on a mild steel substrate, which involves electroplating Zn from a non-aqueous electrolyte, followed by passivation in an oleic acid (OA) solution. The electrodeposited Zn coatings were porous, which facilitated the formation of a chemical conversion layer of Zn oleate (ZO) during OA passivation. The Zn coating after passivation had a twolayer structure, which included an outer layer of ZO with a thickness of ~26 μm and an inner layer of Zn with a thickness of ~6 μm. The outer layer ZO is a type of metal soap with a smooth surface and durable hydrophobicity, such that water droplets can easily slip off its surface. Corrosion testing and electrochemical measurements in 3.5 wt.% NaCl aqueous solution indicate that the Zn coating after OA passivation exhibits outstanding anti-corrosion properties compared with those exhibited by pure Zn coating. The corrosion products and mechanism of the two-layer coating were explored. This study shows that smooth metal oleate coatings can provide hydrophobicity and corrosion resistance simultaneously to mild steel substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.