FoxC1 is an important transcription factor in vertebrate development since its mutation in humans results in Axenfeld-Rieger syndrome. In the mouse, disturbance of its function causes congenital hydrocephalus and abnormalities in the development of various mesodermal derivatives. In this report, we provide one mechanistic basis for the requirement for FoxC1 in vertebrate development. We find that, in Xenopus laevis embryos, FoxC1 expression is regulated by the maternal T-box transcription factor VegT, via the nodal sub-family of TGF signaling transducers. We show that at the late neurula to early tailbud stage, FoxC1 depletion causes the down-regulation of adhesion molecules, EP and E cadherin, as well as members of the Ephrin/EphR signaling families in the mesoderm germ layer resulting in the loss of adhesion and apoptosis of mesodermal cells. Developmental Dynamics 236:2731-2741, 2007.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.