A variety of greenhouse gas reduction scenarios have been proposed around the world to ensure sustainable developments and strengthen the global response to the climate change. To cope with this, it is urgently needed to reduce the amount of energy used for the heating, ventilating, air conditioning, and refrigerating (HVAC&R) systems in large buildings. This study discusses the reduction of cooling energy in large office buildings through the minimization of changes in components and equipment, such as heat source equipment and pumps, changes in the layout and operating methods of chilled water circulation pumps, and changes in the temperatures of chilled and condenser water. To do this, this study targeted an entire cooling system consisting of a hydronic system, a chiller, and a cooling tower, and conducted a quantitative analysis of the energy consumption and of the reduction achieved through a change in the pumping system type in the cooling system and a change in the Korean standard design and temperature of chiller and cooling tower via EnergyPlus simulations. The simulation results showed a cooling energy reduction of 103.2 MWh/yr, around 15.7%, where the primary constant-speed system (Case A) was changed to a primary variable-speed pump (Case B) in the configuration with a chilled water circulation pump. To reduce the cooling energy further, annually 142.3 MWh, around 21.7%, Case C in this study changed the outlet temperature of the chiller and temperature difference from 7 °C, 5 K to 9 °C, 9 K. Finally, when applying a change in the condenser water production temperature from 32 to 23.9 °C in accordance with ASHRAE Standard 90.1 for Case D, a cooling energy saving of 182.4 MWh/yr was observed, which is about 27.8%.
The degree of integration of IT devices and consumption of cooling energy are consistently increasing owing to developments in the data center industry. Hence, to ensure the smooth operation and fault prevention of IT devices, the energy consumption of cooling systems has increased, leading to active research on improvements in cooling system performance for reducing energy consumption. This study examines the reduction in cooling energy consumption using a simulation by applying chilled water control and a water-side economizer (WSE) system to enhance the cooling system efficiency. The simulation results showed that the energy consumption was reduced by 1.8% when the chilled water temperature was set to 11 °C in a conventional system and by up to 19.6% when WSE was also applied. Furthermore, when the changes in chilled water temperature were applied for efficient operation of WSE, the energy consumption was reduced by up to 30.1% compared to that in conventional energy systems.
Previous studies have been conducted by employing various methods to reduce the condenser water temperature, a crucial control variable to consider when attempting to improve the operational efficiency of a chiller. The existing literature dealing with the effects of low-condenser water temperatures is limited, as the cooling water flow rate is often considered the operating variable of the condenser loop. However, to produce additional low condenser water temperatures, the approach temperature of the cooling tower in the system must be reduced. To reduce the approach temperature, it is necessary to review the physical behavior and efficiency of the cooling tower according to the change in the liquid to gas ratio (LGR), which is dependent upon the condenser water flow rate and the cooling tower fan air flow rate within the condenser loop. However, this process has rarely been reviewed in previous studies. Therefore, this study developed a new cooling tower control algorithm from the LGR perspective, and the operational effectiveness was quantitatively reviewed using EnergyPlus. Compared to the conventional conditions, when the cooling tower operation algorithm for low-approach temperatures was applied, the annual energy saving was 27.0%, the average chiller COP was improved by 27.8%, and the average system COP was improved by 47.4%. Furthermore, even when the algorithm was not applied at the same condenser water set temperature, the annual energy saving was 15%. The average COP of the chiller and COP of the system is improved by 2% and 23.2%, respectively. These results indicated that when a cooling tower is operated with a low LGR, even under the same outdoor air and load conditions, the cooling system’s efficiency can be improved with a change in the control algorithm without installing additional high-efficiency equipment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.