Tunneling ionization is a basic process of strong-field atomic physics. Revealing its time-resolved dynamics is one of the goals of attosecond science. Here, we show that after tunneling, a finite response time (about 100 attoseconds) is needed for the electronic state to evolve into an ionized state. We construct a semiclassical model with a compact expression to describe this response time. With this expression, a simple Coulomb-calibrated mapping relation between time and observables is obtained. Comparisons with experiments give direct evidence for our theory. Our work uncovers the transient response process around tunnel exit and provides a simple tool for quantitatively explaining and predicting experimental phenomena in attosecond measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.