Positron trapping in microvoids was studied by positron-lifetime and positron Doppler line-shape measurements of centrifugally atomized 304 stainless-steel powder, which was hot-isostatically-press consolidated. This material contained a concentration of several times 1023/m3 of 1.5-nm-diam microvoids. Positron annihilation was strongly influenced by the microvoids in that a very long lifetime component τ3 of about 600 ps resulted. The intensity of the τ3 component decreased with decreasing number density of 1.5 nm microvoids. The Doppler peak shape was found to be much more strongly influenced by microvoids than by any other defects such as precipitates or grain boundaries. In particular microvoids produced significant narrowing of the Doppler distribution shape.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.