Improving immune capacity may increase the profitability of animal production if it enables animals to better cope with infections. Hematological traits play pivotal roles in animal immune capacity and disease resistance. Thus far, few studies have been conducted using a high-density swine SNP chip panel to unravel the genetic mechanism of the immune capability in domestic animals. In this study, using mixed model-based single-locus regression analyses, we carried out genome-wide association studies, using the Porcine SNP60 BeadChip, for immune responses in piglets for 18 hematological traits (seven leukocyte traits, seven erythrocyte traits, and four platelet traits) after being immunized with classical swine fever vaccine. After adjusting for multiple testing based on permutations, 10, 24, and 77 chromosome-wise significant SNPs were identified for the leukocyte traits, erythrocyte traits, and platelet traits respectively, of which 10 reached genome-wise significance level. Among the 53 SNPs for mean platelet volume, 29 are located in a linkage disequilibrium block between 32.77 and 40.59 Mb on SSC6. Four genes of interest are located within the block, providing genetic evidence that this genomic segment may be considered a candidate region relevant to the platelet traits. Other candidate genes of interest for red blood cell, hemoglobin, and red blood cell volume distribution width also have been found near the significant SNPs. Our genome-wide association study provides a list of significant SNPs and candidate genes that offer valuable information for future dissection of molecular mechanisms regulating hematological traits.
Target cells for Goose parvovirus (GPV) in natural infection are still unknown. In this study, immune system organs namely the spleen, bone marrow, thymus, bursa of Fabricius, and blood of experimentally GPV-infected goslings were examined by an immunoassay and flow cytometry for the presence of viral antigen and by a PCR for viral genome. The results indicated that the virus replicated in some cells of the spleen and bone marrow, but not in peripheral blood lymphocytes (PBLs). These data suggested that some cell populations in the spleen and bone marrow were targets for GPV infection. In addition, the immunoassay used for the detection of GPV was found comparable with a PCR in reliability and sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.