Conservation tillage has been widely promoted to reduce sediment and nutrient transport from agricultural fields. However, the effect of conservation tillage on sediment and nutrient export in snowmelt-dominated climates is not well known. Therefore, a long-term paired watershed study was used to compare sediment and nutrient losses from a conventional and a conservation tillage watershed in the Northern Great Plains region of western Canada. During the treatment period, dissolved nutrient concentrations were typically greater during spring snowmelt than during summer rainfall events, whereas concentrations of sediment and particulate nutrients were greatest during rainfall events. However, because total runoff was dominated by snowmelt, most sediment and nutrient export occurred during snowmelt. Overall, conservation tillage reduced the export of sediment in runoff water by 65%. Similarly, concentrations and export of nitrogen were reduced by 41 and 68%, respectively, relative to conventional tillage. After conversion to conservation tillage, concentrations and exports of phosphorus (P) increased by 42 and 12%, respectively, with soluble P accounting for the majority of the exported P, especially during snowmelt. Our results suggest that management practices designed to improve water quality by reducing sediment and sediment-bound nutrient export from agricultural fields and watersheds can be less effective in cold, dry regions where nutrient export is primarily snowmelt driven and in the dissolved form. In these situations, it may be more appropriate to implement management practices that reduce the accumulation of nutrients in crop residues and the surface soil.
A long-term, field-scale study in southern Manitoba, Canada, was used to identify the critical factors controlling yearly transport of nitrogen (N) and phosphorus (P) by snowmelt runoff. Flow monitoring and water sampling for total and dissolved N and P were performed at the edge of field. The flow-weighted mean concentrations and loads of N and P for the early (the first half of yearly total volume of snowmelt runoff), late (the second half of yearly total volume of snowmelt runoff), and yearly snowmelt runoff were calculated as response variables. A data set of management practices, weather variables, and hydrologic variables was generated and used as predictor variables. Partial least squares regression analysis indicated that critical factors affecting the water chemistry of snowmelt runoff depended on the water quality variable and stage of runoff. Management practices within each year, such as nitrogen application rate, number of tillage passes, and residue burial ratio, were critical factors for flow-weighted mean concentration of N, but not for P concentration or nutrient loads. However, the most important factors controlling nutrient concentrations and loads were those related to the volume of runoff, including snow water equivalent, flow rate, and runoff duration. The critical factors identified for field-scale yearly snowmelt losses provide the basis for modeling of nutrient losses in southern Manitoba and potentially throughout areas with similar climate in the northern Great Plains region, and will aid in the design of effective practices to reduce agricultural nonpoint nutrient pollution in downstream waters.
Most beneficial management practices (BMPs) recommended for reducing nutrient losses from agricultural land have been established and tested in temperate and humid regions. Previous studies on the effects of these BMPs in cold-climate regions, especially at the small watershed scale, are rare. In this study, runoff and water quality were monitored from 1999 to 2008 at the outlets of two subwatersheds in the South Tobacco Creek watershed in Manitoba, Canada. Five BMPs-a holding pond below a beef cattle overwintering feedlot, riparian zone and grassed waterway management, grazing restriction, perennial forage conversion, and nutrient management-were implemented in one of these two subwatersheds beginning in 2005. We determined that >80% of the N and P in runoff at the outlets of the two subwatersheds were lost in dissolved forms, ≈ 50% during snowmelt events and ≈ 33% during rainfall events. When all snowmelt- and rainfall-induced runoff events were considered, the five BMPs collectively decreased total N (TN) and total P (TP) exports in runoff at the treatment subwatershed outlet by 41 and 38%, respectively. The corresponding reductions in flow-weighted mean concentrations (FWMCs) were 43% for TN and 32% for TP. In most cases, similar reductions in exports and FWMCs were measured for both dissolved and particulate forms of N and P, and during both rainfall and snowmelt-induced runoff events. Indirect assessment suggests that retention of nutrients in the holding pond could account for as much as 63 and 57%, respectively, of the BMP-induced reductions in TN and TP exports at the treatment subwatershed outlet. The nutrient management BMP was estimated to have reduced N and P inputs on land by 36 and 59%, respectively, in part due to the lower rates of nutrient application to fields converted from annual crop to perennial forage. Overall, even though the proportional contributions of individual BMPs were not directly measured in this study, the collective reduction of nutrient losses from the five BMPs was substantial.
An 8-yr field-scale study, 2005 to 2012, investigated effects of agricultural land use on nutrient and sediment losses during snowmelt runoff from four treatment fields in southern Manitoba. In 2005, two fields with a long-term history of annual crop (AC) production were planted to perennial forage (PF), while two other fields were left in AC production. In 2009, the AC fields were converted to PF, while the PF fields were returned to AC. Runoff flow rates were monitored at the lower edge of the fields, and nutrient concentrations of runoff water were determined. The effects of AC and PF on selected variables were similar for the spatial (between-fields) and temporal (within-field) comparisons. The flow-weighted mean concentrations (FWMCs) and loads of particulate N, P, and sediment were not affected by treatment. Soil test N and the FWMC and load of NO (NO + NO) were significantly greater in the AC treatment, but the FWMC and load of NH were greater in the PF treatment. Loads of total dissolved N (TDN) and total N (TN) were not affected by treatment, although the concentrations of TDN and TN were greater in the AC treatment. The PF treatment significantly increased FWMCs and loads of total dissolved P (TDP) and total P (TP). On an annual snowmelt runoff basis, the PF treatment increased the FWMC of TDP by 53% and TP by 52% and increased the load of TDP by 221% and TP by 160% compared with the AC treatment. The greater P and NH losses in the PF treatment were attributed mainly to nutrient release from forage residue due to freezing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.