The results of a numerical simulation of the generation of runaway electrons in pressurized nitrogen and helium gases are presented. It was shown that runaway electrons generation occurs in two stages. In the first stage, runaway electrons are composed of the electrons emitted by the cathode and produced in gas ionization in the vicinity of the cathode. This stage is terminated with the formation of the virtual cathode, which becomes the primary source of runaway electrons in the second stage. Also, it was shown that runaway electrons current is limited by both the shielding of the field emission by the space charge of the emitted electrons and the formation of a virtual cathode. In addition, the influence of the initial conditions, such as voltage rise time and amplitude, gas pressure, and the type of gas, on the processes that accompany runaway electrons generation is presented.
Nanosecond discharge in dense gases has been the focus of intense research since the 1960's due to the interesting physical phenomena involved and its important practical applications. Plasma produced in such a discharge is used widely for pulsed laser pumping, effective release of energy from microwave compressors, and switching of
An investigation of the properties of the plasma and the electron beam produced by velvet cathodes in a diode powered by a ∼200kV, ∼300ns pulse is presented. Spectroscopic measurements demonstrated that the source of the electrons is surface plasma with electron density and temperature of ∼4×1014cm−3 and ∼7eV, respectively, for an electron current density of ∼50A∕cm2. At the beginning of the accelerating pulse, the plasma expands at a velocity of ∼106cm∕s towards the anode for a few millimeters, where its stoppage occurs. It was shown by optical and x-ray diagnostics that in spite of the individual character and nonuniform cross-sectional distribution of the cathode plasma sources, the uniformity of the extracted electron beam is satisfactory. A mechanism controlling the electron current-density cross-sectional uniformity is suggested. This mechanism is based on a fast radial plasma expansion towards the center due to a magnetic-field radial gradient. Finally, it was shown that the interaction of the electron beam with the stainless-steel anode does not lead to the formation of an anode plasma.
The results of numerical simulations of the generation of runaway electrons in a nitrogen-filled coaxial diode with electron emission governed by field emission that transfers to explosive emission with a variable time delay are presented. It is shown that the time when the explosive emission turns on influences significantly the generation of runaway electrons. Namely, an explosive emission turn-on prior to the formation of the virtual cathode leads to an increase in the current amplitude of the runaway electrons and a decrease in its duration. Conversely, an explosive emission turn-on after the formation of the virtual cathode and during the high-voltage pulse rise time does not influence the generation of runaway electrons significantly. When the explosive emission turns on during the fall of the high-voltage pulse and after the virtual cathode formation, one obtains additional runaway electron generation. Finally, a comparison between electron energy distributions obtained with and without explosive emission turn-on showed that the former increases the number of electrons in the high-energy tail and the electrons' largest energy. The comparison of both the simulated electron energy distributions with the experimentally obtained electron spectrum has shown that the best fit is obtained when the explosive emission is considered in the simulation.
There is a continuous interest in research of electron sources which can be used for generation of uniform electron beams produced at E≤105 V/cm and duration ≤10−5 s. In this review, several types of plasma electron sources will be considered, namely, passive (metal ceramic, velvet and carbon fiber with and without CsI coating, and multicapillary and multislot cathodes) and active (ferroelectric and hollow anodes) plasma sources. The operation of passive sources is governed by the formation of flashover plasma whose parameters depend on the amplitude and rise time of the accelerating electric field. In the case of ferroelectric and hollow-anode plasma sources the plasma parameters are controlled by the driving pulse and discharge current, respectively. Using different time- and space-resolved electrical, optical, spectroscopical, Thomson scattering and x-ray diagnostics, the parameters of the plasma and generated electron beam were characterized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.