In Chinese metro lines, Vanguard fastener system is widely used as vibration damping fastener. However, the rails mounted with this fastener system are deeply affected by rail corrugation. The generation mechanism of corrugation wear at a metro track mounted with Vanguard fastening is revealed through the numerical simulation method. A finite element model including two rails, the track system, and a leading wheelset is set up. The parameter sensitivity analysis is conducted to identify the dominant factors affecting the rail corrugation. Then, the remedy method to suppress the corrugation wear is put forward on the basis of the parameter analysis results. The results indicate that the severe corrugation wear on the inner rail is attributed to the self-sustained vibration of the wheelset–track system aroused by the saturated wheel–rail creep force. The frequency of the rail corrugation calculated by the model is very close to the measured data. The elastic modulus and the damping coefficient of the rubber rest pad in the Vanguard fasteners have a high impact on rail corrugation. Increasing the elastic modulus and the damping coefficient can effectively restrain or even eliminate the rail corrugation. Bringing the damping coefficient of the rubber rest pad above 0.0001 can significantly alleviate the rail corrugation. The influence of the damping and stiffness of the rubber pad under the floating slab track bed is negligible.
This paper conducts a detailed investigation into the formation mechanism of wheel polygonalization in high-speed trains and its influence factors through numerical simulation. A finite element model including two rails, one wheelset, and three disc brake units is set up to study the formation mechanism of wheel polygonalization in high-speed trains based on the point of view of frictional self-excited vibration. Using the finite element complex analysis, the dynamic stability of the wheelset–track–disc brake system is studied. In addition, the influence factors on the wheel polygonalization are investigated. Results show that when the longitudinal creep force is unsaturated, the 21-order polygonal wear of wheels occurs easily due to the self-excited vibration of the disc brake unit. When the longitudinal creep force is saturated, the 12-order polygonal wear of wheels probably occurs due to the self-excited vibration of the disc brake unit. The bigger the friction coefficient between the brake disc and pad, the greater the occurrence propensity of the polygonal wear of wheels. Vertical fastener damping that is too large or too small is disadvantageous for suppressing wheel corrugation. However, increasing the lateral fastener damping is beneficial for reducing the polygonal wear of wheels. When the vertical fastener stiffness is 25 MN/m, 7-order, 9-order, and 14-order wheel polygonalization can easily occur. A higher lateral fastener stiffness is beneficial for the suppression of wheel polygonalization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.