Zinc phthalocyanine tetrasulfonate (ZnPcS4), a potential photosensitizer for photodynamic therapy (PDT), has been studied using femtosecond laser spectroscopy. The excited-state dynamics in water have been found to be fast (< 80 ps) and dominated by intermolecular aggregation. Since the proposed mechanism for PDT is energy transfer from the triplet excited state of the photosensitizer to triplet O2 creating singlet O2, the short lifetime is expected to be unfavorable for producing singlet O2. This leads to the suggestion that the presence of biological substrates may have an effect on the excited-state dynamics. To test this hypothesis, the lifetimes of the excited states of ZnPcS4 have been directly measured in the presence of a model membrane, n-hexadecyltrimethylammonium bromide (CTAB). The excited-state dynamics of ZnPcS4 in buffer solutions and with human serum albumin (HSA) have also been measured. The presence of HSA and CTAB increases the excited-state lifetime significantly relative to that observed in water. The longer lifetime of ZnPcS4 in CTAB (> 1 ns) indicates that the micellar surface favors monomer formation. By increasing the excited-state lifetime, the surface substantially increases the photosensitizing potential of ZnPcS4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.