Chemical corrosion in coal mines substantially affects the mechanical properties of rocks such as sandstone and may trigger the instability of roadways. In this article, the effects of chemical corrosion on the Mode I fracture toughness of sandstone are investigated using semicircular bending tests. The two experimental factors involved in this article are the pH value of the soaking solution and the soaking time. Based on the peak load and the shape parameters of specimens, the Mode I fracture toughness of sandstone under chemical corrosion is estimated as a function of the pH value of the soaking solution and the soaking time. In soaking tests, the relationships between the pH value of the soaking solution and the soaking time and the relative quality and porosity of sandstone are determined. The results indicate that chemical corrosion weakens the mechanical properties of sandstone specimens but enhances the ductility of sandstone specimens. The Mode I fracture toughness of sandstones decreases with an increase in the soaking time. The Mode I fracture toughness of sandstones initially increases but then decreases with an increase in the pH value. When the pH value is 7, the Mode I fracture toughness of sandstone attains the maximum value. The damage to sandstone specimens shares the same mechanical mechanism as the deterioration of the Mode I fracture toughness of sandstone. The results are significant for establishing a coupling damage model for the mechanical–hydrochemical behaviors of rocks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.