This report compares cellular localization of fesselin in chicken smooth, skeletal and cardiac muscle tissues using affinity purified polyclonal fesselin antibodies. Western blot analyses revealed large amounts of fesselin in gizzard smooth muscle with lower amounts in skeletal and cardiac muscle. In gizzard, fesselin was detected by immunofluorescence as discrete cytoplasmic structures. Fesselin did not co-localize with talin, vinculin or caveolin indicating that fesselin is not associated with dense bands or caveolar regions of the cell membrane. Immunoelectron microscopy established localization of fesselin within dense bodies. Since dense bodies function as anchorage points for actin and desmin in smooth muscle cells, fesselin may be involved in establishing cytoskeletal structure in this tissue. In skeletal muscle, fesselin was associated with desmin in regularly space bands distributed along the length of muscle fibers suggesting localization to the Z-line. Infrequently, this banding pattern was observed in heart tissues as well. Localization at the Z-line of skeletal and cardiac muscle suggests a role in contraction of these tissues.
Retrograde tracing with True Blue was combined with immunocytochemistry to determine the source of any calretinin-immunoreactive (CR-ir) nerves projecting to the rat ovary. In the ovary, a strong signal for calretinin immunoreactivity was localized in interstitial gland cells; however, no intraovarian CR-ir nerves could be demonstrated. When the superior ovarian nerve was isolated, cut, and True Blue applied to the proximal end, the fluorescent dye was retrogradely transported to a population of cells located in T-12, T-13, and L-1 dorsal root and paravertebral ganglia. There was virtually no dual labeling of cells in these ganglia with calretinin (< 0.009% dual labeling in dorsal root and <0.014% in paravertebral ganglia). However, greater than two-thirds of the True Blue-labeled cells were immediately adjacent to CR-ir cells in dorsal root ganglia. This arrangement is suggestive of a paracrine mechanism between CR-ir cells and cells projecting to the ovary. In paravertebral ganglia, 63% of cells projecting to the ovary were surrounded completely or partially by beaded CR-ir nerve fibers. The source of these fibers (sensory or preganglionic sympathetic) is unknown but hypothesized to be preganglionic. Collectively, these observations suggest a participatory role for calretinin in ovarian function, either directly via effects on the interstitial gland or indirectly by influencing neurons projecting to the ovary.
The effect of space flight in a National Aeronautics and Space Administration shuttle was studied in pregnant rats. Rats were launched on day 11 of gestation and recovered on day 20 of gestation. Pregnancy was allowed to proceed to term and rats delivered vaginally on days 22-23, although flight animals required more labour contractions to complete the delivery process. Pups were placed with foster dams and connexin 26 and 43 were examined in the uterus of flight animals approximately 3 h after delivery. Space flight did not affect uterine connexin 26, localized primarily in epithelial cells of the endometrium, but decreased connexin 43, the major gap junction protein in the myometrium. It is suggested that decreased connexin 43 alters synchronization and coordination of labour contractions, resulting in a requirement for more contractions to complete the delivery process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.