The inductively coupled plasma reactive ion etching (ICP-RIE) is a selective dry etching method used in fabrication technology of various semiconductor devices. The etching is used to form non-planar microstructures—trenches or mesa structures, and tilted sidewalls with a controlled angle. The ICP-RIE method combining a high finishing accuracy and reproducibility is excellent for etching hard materials, such as SiC, GaN or diamond. The paper presents a review of silicon carbide etching—principles of the ICP-RIE method, the results of SiC etching and undesired phenomena of the ICP-RIE process are presented. The article includes SEM photos and experimental results obtained from different ICP-RIE processes. The influence of O2 addition to the SF6 plasma as well as the change of both RIE and ICP power on the etching rate of the Cr mask used in processes and on the selectivity of SiC/Cr etching are reported for the first time. SiC is an attractive semiconductor with many excellent properties, that can bring huge potential benefits thorough advances in submicron semiconductor processing technology. Recently, there has been an interest in SiC due to its potential wide application in power electronics, in particular in automotive, renewable energy and rail transport.
Laplace photoinduced transient spectroscopy has been applied to determine the electronic properties and concentrations of deep traps in high purity n-type silicon irradiated with high fluences of 23-MeV protons. From the temperature dependence of thermal emission rates of excess charge carriers obtained by the analysis of the photocurrent relaxation waveforms measured at temperatures of 30–320 K, eight deep traps with activation energies ranging from 255 to 559 meV have been resolved. The dependence of these trap’s concentrations on the proton fluence are demonstrated for the fluence values ranging from 1 × 1014 to 5 × 1015 neq/cm2. In comparison to the previously reported results of theoretical and experimental studies on the electronic properties of small vacancy clusters in irradiated silicon, we tentatively attribute four detected traps with activation energies of 255, 367, 405, and 512 meV to the energy levels related to the 2−/− charge state changes of divacancy (V2), trivacancy (V3), tetravacancy (V4), and pentavacancy (V5), respectively. Simultaneously, we propose the attribution of four deep traps with higher activation energies of 415, 456, 526, and 559 meV to the energy levels related to the −/0 charge state changes of these small vacancy clusters, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.