Many surfaces in nature such as the lotus leaf, cicada wings, water spider legs and gecko feet have attracted attention due to their inherent superhydrophobicity and self-cleaning properties. These surfaces are characterized by water contact angles greater than 150° and contact angle hysteresis < 10°. In this work, a continuous fabrication methodology for production of such superhydrophobic surfaces consisting of well-ordered micro-pillar structures (aspect ratio greater than 1 (1.3)) on a large area polyamide film using roll-to-roll hot embossing process was demonstrated. It was found that the temperature played a significant role in replication. Incomplete replication was observed in regime 1 (150 to 155 °C) and the height of replication was influenced by nip pressure and roll speed due to viscosity variations. In contrast, complete replication was seen in regime 2 (190 to 195 °C) and the height of replication was insensitive to nip pressure and roll speed due to a fairly constant viscosity value. The embossed polyamide surface, once coated with a low surface energy 1H, 1H, 2H, 2H-perfluorooctyltrichlorosilane (PFTS) monolayer, showed super-repellant characteristics with respect to water and demonstrated a successful manufacturing approach to fabricate superhydrophobic surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.