Context. Observations show that the coronal X-ray emission of the Sun and other stars depends on the surface magnetic field. Aims. Using power-law scaling relations between different physical parameters, we aim to build an analytical model to connect the observed X-ray emission to the surface magnetic flux. Methods. The basis for our model are the scaling laws of Rosner, Tucker & Vaiana (RTV) that connect the temperature and pressure of a coronal loop to its length and energy input. To estimate the energy flux into the upper atmosphere, we used scalings derived for different heating mechanisms, such as field-line braiding or Alfvén wave heating. We supplemented this with observed relations between active region size and magnetic flux and derived scalings of how X-ray emissivity depends on temperature. Results. Based on our analytical model, we find a power-law dependence of the X-ray emission on the magnetic flux, LX ∝ Φm, with a power-law index m being in the range from about one to two. This finding is consistent with a wide range of observations, from individual features on the Sun, such as bright points or active regions, to stars of different types and varying levels of activity. The power-law index m depends on the choice of the heating mechanism, and our results slightly favor the braiding and nanoflare scenarios over Alfvén wave heating. In addition, the choice of instrument will have an impact on the power-law index m because of the sensitivity of the observed wavelength region to the temperature of the coronal plasma. Conclusions. Overall, our simple analytical model based on the RTV scaling laws gives a good representation of the observed X-ray emission. Therefore we might be able to understand stellar coronal activity though a collection of basic building blocks, like loops, which we can study in spatially resolved detail on the Sun.
Context. Observations suggest a power-law relation between the coronal emission in X-rays, LX, and the total (unsigned) magnetic flux at the stellar surface, Φ. The physics basis for this relation is poorly understood. Aims. We use three-dimensional (3D) magnetohydrodynamics (MHD) numerical models of the coronae above active regions, that is, strong concentrations of magnetic field, to investigate the LX versus Φ relation and illustrate this relation with an analytical model based on simple well-established scaling relations. Methods. In the 3D MHD model horizontal (convective) motions near the surface induce currents in the coronal magnetic field that are dissipated and heat the plasma. This self-consistently creates a corona with a temperature of 1 MK. We run a series of models that differ in terms of the (unsigned) magnetic flux at the surface by changing the (peak) magnetic field strength while keeping all other parameters fixed. Results. In the 3D MHD models we find that the energy input into the corona, characterized by either the Poynting flux or the total volumetric heating, scales roughly quadratically with the unsigned surface flux Φ. This is expected from heating through field-line braiding. Our central result is the nonlinear scaling of the X-ray emission as LX ∝ Φ3.44. This scaling is slightly steeper than found in recent observations that give power-law indices of up to only 2 or 3. Assuming that on a real star, not only the peak magnetic field strength in the active regions changes but also their number (or surface filling factor), our results are consistent with observations. Conclusions. Our model provides indications of what causes the steep increase in X-ray luminosity by four orders of magnitude from solar-type activity to fast rotating active stars.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.