One of the well-proven and efficient methods of obtaining a very low-energy impact of primary electrons in the scanning electron microscope is to introduce a retarding field element below the pole piece of the objective lens (OL). It is advantageous to use the specimen alone as the negatively biased electrode (i.e., cathode of the cathode lens). The optical power of the cathode lens modifies some of the standard parameters of the image formation such as relation of working distance to OL excitation or magnification to the scanning coils current, the impact angle of primary electrons, and so forth. In computer-controlled electron microscopes these parameters, particularly with regard to focusing and magnification, can be corrected automatically. Derivation of algorithms for such corrections and their experimental verifications are presented in this paper. Furthermore, a more accurate analytical expression for the focal length of an aperture lens is derived.
Summary: This paper concerns the problems connected with the observation of a nonconductive specimen in a scanning electron microscope (SEM) when incident electrons create a surface charge and a corresponding electric field. The special configuration of the cathode lens enables one to control the landing energy of primary electrons via the specimen bias. In the cathode lens, the accelerating electric field at the surface of the specimen combines itself with that of the surface charge in influencing the trajectories of the signal electrons and hence the detected signal level and the possible recapturing of slow secondaries. Recaptured electrons reduce the ultimate positive surface potential, which arises when working below the higher critical energy of electron impact. Computer simulations of electron trajectories were performed for the typical cathode lens configuration and for a model specimen characterized by emission yields similar to those for glass. The simulations brought an extensive set of data about the trajectories of both secondary and backscattered electrons. Furthermore, the data were processed in order to assess the charge balance between the emitted and recaptured electrons as well as the collection efficiency of the detector. The results include values of the ultimate positive surface potential and the detected signal level, both in dependence on the initial energy of the electron impact and the size of the field of view. Finally, the method for the determination of critical energy is reevaluated. This is based on the measurement of the time dependence of the detected signal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.