The branched structure of potato amylopectin (degree of polymerization $200,000) was modeled in a computer matrix. The chain-length distribution and the length and width of a cluster of the amylopectin molecule were used as input variables in the model. Independent literature values related to the structure of amylopectin (percentage b-hydrolysis and ratio of A-to B-chains) were used for evaluation of the branching characteristics (length of branch area and chance of branching) of the modeled amylopectin. The structural parameters predicted by the model agreed very well with data from the literature. The chain-length distribution and values for the percentage of b-hydrolysis were the two most important parameters required to model the structure of amylopectin. This computer-generated model of potato amylopectin in solution can be used to simulate various enzymatic (i.e., a-amylase, b-amylase, glucoamylase, pullunanase) or chemical reactions (i.e., acid hydrolysis, hypochlorite oxidation). The modeling approach described in this paper is also suitable for starches from other botanical sources (i.e., corn, wheat, tapioca).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.