Low body mass index (BMI) is a well-documented risk factor for future fracture. The aim of this study was to quantify this effect and to explore the association of BMI with fracture risk in relation to age, gender and bone mineral density (BMD) from an international perspective using worldwide data. We studied individual participant data from almost 60,000 men and women from 12 prospective population-based cohorts comprising Rotterdam, EVOS/EPOS, CaMos, Rochester, Sheffield, Dubbo, EPIDOS, OFELY, Kuopio, Hiroshima, and two cohorts from Gothenburg, with a total follow-up of over 250,000 person years. The effects of BMI, BMD, age and gender on the risk of any fracture, any osteoporotic fracture, and hip fracture alone was examined using a Poisson regression model in each cohort separately. The results of the different studies were then merged. Without information on BMD, the age-adjusted risk for any type of fracture increased significantly with lower BMI. Overall, the risk ratio (RR) per unit higher BMI was 0.98 (95% confidence interval [CI], 0.97-0.99) for any fracture, 0.97 (95% CI, 0.96-0.98) for osteoporotic fracture and 0.93 (95% CI, 0.91-0.94) for hip fracture (all p <0.001). The RR per unit change in BMI was very similar in men and women ( p >0.30). After adjusting for BMD, these RR became 1 for any fracture or osteoporotic fracture and 0.98 for hip fracture (significant in women). The gradient of fracture risk without adjustment for BMD was not linearly distributed across values for BMI. Instead, the contribution to fracture risk was much more marked at low values of BMI than at values above the median. This nonlinear relation of risk with BMI was most evident for hip fracture risk. When compared with a BMI of 25 kg/m(2), a BMI of 20 kg/m(2) was associated with a nearly twofold increase in risk ratio (RR=1.95; 95% CI, 1.71-2.22) for hip fracture. In contrast, a BMI of 30 kg/m(2), when compared with a BMI of 25 kg/m(2), was associated with only a 17% reduction in hip fracture risk (RR=0.83; 95% CI, 0.69-0.99). We conclude that low BMI confers a risk of substantial importance for all fractures that is largely independent of age and sex, but dependent on BMD. The significance of BMI as a risk factor varies according to the level of BMI. Its validation on an international basis permits the use of this risk factor in case-finding strategies.
The models developed provide the basis for the integrated use of validated clinical risk factors in men and women to aid in fracture risk prediction.
The objectives of the present study were to estimate long-term risks of osteoporotic fractures. The incidence of hip, distal forearm, proximal humerus and vertebral fracture were obtained from patient records in Malmö, Sweden. Vertebral fractures were confined to those coming to clinical attention, either as an inpatient or an outpatient case. Patient records were examined to exclude individuals with prior fractures at the same site. Future mortality rates were computed for each year of age from Poisson models using the Swedish Patient Register and the Statistical Year Book. The incidence and lifetime risk of any fracture were determined from the proportion of individuals fracture-free from the age of 45 years. Lifetime risk of shoulder, forearm, hip and spine fracture were 13.3%, 21.5%, 23.3% and 15.4% respectively in women at the age of 45 years. Corresponding values for men at the age of 45 years were 4.4%, 5.2%, 11.2% and 8.6%. The risk of any of these fractures was 47.3% and 23.8% in women and men respectively. Remaining lifetime risk was stable with age for hip fracture, but decreased by 20-30% by the age of 70 years in the case of other fractures. Ten and 15 year risks for all types of fractures increased with age until the age of 80 years, when they approached lifetime risks because of the competing probabilities of fracture and death. We conclude that fractures of the hip and spine carry higher risks than fractures at other sites, and that lifetime risks of fracture of the hip in particular have been underestimated.
The aim of this study was to quantify the global burden of osteoporosis as judged by hip fracture and the burden in different socio-economic regions of the world. The population mortality in 1990 and the incidence of hip fracture in different regions were identified, where possible in 1990. Excess mortality from hip fracture used data for Sweden, and disability weights were assigned to survivors from hip fracture. In 1990 there were an estimated 1.31 million new hip fractures, and the prevalence of hip fractures with disability was 4.48 million. There were 740,000 deaths estimated to be associated with hip fracture. There were 1.75 million disability adjusted life-years lost, representing 0.1% of the global burden of disease world-wide and 1.4% of the burden amongst women from the established market economies. We conclude that hip fracture is a significant cause of morbidity and mortality worldwide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.