Background It is important to assess the degree of brain injury and predict long-term outcomes in neonates diagnosed with hypoxic-ischemic encephalopathy (HIE). However, routine studies, including magnetic resonance imaging (MRI) and conventional encephalography (EEG) or amplitude-integrated EEG (aEEG), have their own limitations in terms of availability and accuracy of evaluation. Recently, quantitative EEG (qEEG) has been shown to improve the predictive reliability of neonatal HIE and has been further refined with brain mapping techniques. Methods We investigated background EEG activities in 29 neonates with HIE who experienced therapeutic hypothermia, via qEEG using a distributed source model. MRI images were evaluated and classified into two groups (normal-to-mild injury vs moderate-to-severe injury), based on a scoring system. Non-parametric statistical analysis using standardized low-resolution brain electromagnetic tomography was performed to compare the current density distribution of four frequency bands (delta, theta, alpha, and beta) between the two groups. Results Electrical neuronal activities were significantly lower in the moderate-to-severe injury group compared with the normal-to-mild injury group. Background EEG activities in moderate-to-severe HIE were most significantly reduced in the temporal and parietal lobes. Quantitative EEG also revealed a decrease in background activity at all frequency bands, with a maximum in decrease in the delta component. The maximum difference in current density was found in the inferior parietal lobule of the right parietal lobe for the delta frequency band. Conclusions Our study demonstrated quantitative and topographical changes in EEG in moderate-to-severe neonatal HIE. They also suggest possible implementation and evaluation of conventional EEG and aEEG in neonatal HIE. The findings have implications as biomarkers in the assessment of neonatal HIE.
Juvenile myoclonic epilepsy (JME) is a common generalized epilepsy syndrome considered the prototype of idiopathic generalized epilepsy. To date, generalized and focal seizures have been the fundamental concepts for classifying seizure types. In several studies, focal features of JME have been reported predominantly in the frontal lobe. However, results in previous studies are inconsistent. Therefore, we investigated the origin of epileptiform discharges in JME. We performed electroencephalography source localization using a distributed model with standardized low-resolution brain electromagnetic tomography. In 20 patients with JME, standardized low-resolution brain electromagnetic tomography images corresponding to the midpoint of the ascending phase and the negative peak of epileptiform discharges were obtained from a total of 362 electroencephalography epochs (181 epochs at each timepoint). At the ascending phase, the maximal current source density was located in the frontal lobe (58.6%), followed by the parietal (26.5%) and occipital lobes (8.8%). At the negative peak, the maximal current source density was located in the frontal lobe (69.1%), followed by the parietal (11.6%) and occipital lobes (9.4%). In the ascending phase, 41.4% of discharges were located outside the frontal lobe, and 30.9% were in the negative peak. Frontal predominance of epileptiform discharges was observed; however, source localization extending to various cortical regions also was identified. This widespread pattern was more prominent in the ascending phase ( P = .038). The study results showed that JME includes widespread cortical regions over the frontal lobe. The current concept of generalized epilepsy and pathophysiology in JME needs further validation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.