Nonporous silica nanoparticles (SiNPs) are promising drug carrier platforms for intraocular drug delivery. In this study, we investigated the safety of three different sizes of SiNPs (50, 100, and 150 nm) in a human corneal endothelial cell (HCEC) line, B4G12. The HCECs were exposed to different concentrations (0, 25, 50, and 100 µg/ml) of three sizes of SiNPs for up to 48 h. Cellular viability, autophagy, lactate dehydrogenase (LDH) assay, and mammalian target of rapamycin (mTOR) pathway activation were evaluated. Intracellular distribution of the SiNPs was evaluated with transmission electron microscopy (TEM). TEM revealed that the SiNPs were up-taken by the HCECs inside cytoplasmic vacuoles. No mitochondrial structural damage was observed. Both cellular viability and LDH level remained unchanged with up to 100 µg/mL of SiNP treatment. Autophagy showed a significant dose-dependent activation with 50, 100, and 150 nm SiNPs. However, the mTOR activation remained unchanged. Human corneal tissue culture with 100 µg/ml concentrations of SiNPs for 72 h revealed no significant endothelial toxicity. In vivo corneal safety of the SiNPs (0.05 ml intracameral injection, 200 mg/ml concentration) was also verified in rabbit models. These findings suggested that 50, 100, and 150 nm SiNPs did not induce acute significant cytotoxicity in corneal endothelial cells at concentrations up to 100 µg/mL. However, long-term toxicity of SiNPs remains unknown.
Although the wound healing effects of nitric oxide (NO) are known, the mechanism by which NO modulates corneal wound healing remains unclear. In this study, we investigated the effect of exogenous NO donor (NaNO2) on corneal wound healing. We found that NaNO2 (0.1 μM to 100 μM) increased human corneal epithelial cell (HCEC) viability and migration. It also modulated the phosphorylation of mitogen-activated protein kinases (MAPKs) in a time- dependent manner in those HCECs. Further, p38 MAPK phosphorylation increased at 6 h and normalized at 24 h, while the phosphorylation of extracellular signal regulated kinase (ERK) was increased both at 6 h and 24 h. Topical treatment with NaNO2 (10 μM) enhanced corneal epithelial healing and decreased corneal opacity in murine corneal alkali burn model by modulating inflammatory cytokines. Our findings suggest that NO increased HCEC proliferation and migration via time-dependent MAPK activation and eventually enhanced corneal recovery from the alkali burn.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.