Articles you may be interested inThe effect of the top electrode interface on the hysteretic behavior of epitaxial ferroelectric Pb(Zr,Ti)O3 thin films with bottom SrRuO3 electrode J. Appl. Phys. 112, 064116 (2012); 10.1063/1.4754318 Effect of Pt bottom electrode texture selection on the tetragonality and physical properties of Ba0.8Sr0.2TiO3 thin films produced by pulsed laser deposition J. Appl. Phys. 112, 044105 (2012); 10.1063/1.4748288 Effect of LaNiO 3 interlayer on dielectric properties of ( Ba 0.5 Sr 0.5 ) TiO 3 thin films deposited on differently oriented Pt electrodes
Atomic layer deposition ͑ALD͒ has become an essential technique for fabricating nano-scale thin films in the microelectronics industry, and its applications have been extended to multicomponent thin films, as well as to single metal oxide and nitride films. A mathematical film growth model for ALD is proposed to predict the deposition characteristics of multicomponent thin films grown mainly in the transient regime, where the film thickness varies nonlinearly with the number of cycles. The nonlinear behavior of the growth rate and the composition of multicomponent thin films deposited by ALD depend on the precursor used and adsorbing surface. Hence, the equations to describe the change of surface coverage with precursor adsorption and the surface reaction are derived. The area reduction ratio is introduced as a parameter related to the number of adsorbed precursor molecules per unit area. The proposed model was applied to the deposition of Sr-Ti-O thin films to confirm its validity. SrO and TiO 2 films were grown separately to investigate their ALD characteristics and to extract model parameters. As a result, it was shown that the thickness and composition of Sr-Ti-O films follow the trend predicted by the proposed model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.