The most important research area in robotics is navigation algorithms. Robot path planning (RPP) is the process of choosing the best route for a mobile robot to take before it moves. Finding an ideal or nearly ideal path is referred to as “path planning optimization.” Finding the best solution values that satisfy a single or a number of objectives, such as the shortest, smoothest, and safest path, is the goal. The objective of this study is to present an overview of navigation strategies for mobile robots that utilize three classical approaches, namely: the roadmap approach (RM), cell decomposition (CD), and artificial potential fields (APF), in addition to eleven heuristic approaches, including the genetic algorithm (GA), ant colony optimization (ACO), artificial bee colony (ABC), gray wolf optimization (GWO), shuffled frog-leaping algorithm (SFLA), whale optimization algorithm (WOA), bacterial foraging optimization (BFO), firefly (FF) algorithm, cuckoo search (CS), and bat algorithm (BA), which may be used in various environmental situations. Multiple issues, including dynamic goals, static and dynamic environments, multiple robots, real-time simulation, kinematic analysis, and hybrid algorithms, are addressed in a different set of articles presented in this study. A discussion, as well as thorough tables and charts, will be presented at the end of this work to help readers understand what types of strategies for path planning are developed for use in a wide range of ecological contexts. Therefore, this work’s main contribution is that it provides a broad view of robot path planning, which will make it easier for scientists to study the topic in the near future.
A disturbance/uncertainty estimation and disturbance rejection technique are proposed in this work and verified on a ground two-wheel differential drive mobile robot (DDMR) in the presence of a mismatched disturbance. The offered scheme is the an improved active disturbance rejection control (IADRC) approach-based enhanced dynamic speed controller. To efficiently eliminate the effect produced by the system uncertainties and external torque disturbance on both wheels, the IADRC is adopted, whereby all the torque disturbances and DDMR parameter uncertainties are conglomerated altogether and considered a generalized disturbance. This generalized disturbance is observed and cancelled by a novel nonlinear sliding mode extended state observer (NSMESO) in real-time. Through numerical simulations, various performance indices are measured, with a reduction of 86% and 97% in the ITAE index for the right and left wheels, respectively. Finally, these indices validate the efficacy of the proposed dynamic speed controller by almost damping the chattering phenomena and supplying a high insusceptibility in the closed-loop system against torque disturbance.
This study investigates the feasibility of a mobile robot navigating and discovering its location in unknown environments, followed by the creation of maps of these navigated environments for future use. First, a real mobile robot named TurtleBot3 Burger was used to achieve the simultaneous localization and mapping (SLAM) technique for a complex environment with 12 obstacles of different sizes based on the Rviz library, which is built on the robot operating system (ROS) booted in Linux. It is possible to control the robot and perform this process remotely by using an Amazon Elastic Compute Cloud (Amazon EC2) instance service. Then, the map to the Amazon Simple Storage Service (Amazon S3) cloud was uploaded. This provides a database to display maps and use them at any time for navigation without the need to redraw the map. This map can be accessed by using an authentication process (username and password) supervised by the cloud server administrator. After that, using the serverless image handler (SIH), with the aid of this solution, you can change the size of images, change the color of the background, format them, or add watermarks. Experiment results demonstrated the ability to build a map of an unknown location in a complex environment and use it for navigation tasks on a real mobile robot via remote control. It also showed the success of the process of storing the map for future use and the process of modifying the map using SIH.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.