This paper analyzes the authentication and key agreement (AKA) protocol for universal mobile telecommunications system (UMTS) mobile networks, where a new protocol is proposed. In our proposed protocol, the mobile station is responsible for generating of authentication token (AUTN) and random number (RAND). The home location register is responsible for comparison of response and expected response to take a decision. Therefore, the bottleneck at authentication center is avoided by reducing the number of messages between mobile and authentication center. The authentication time delay, call setup time, and signalling traffic are minimized in the proposed protocol. A fluid mobility model is used to investigate the performance of signalling traffic and load transaction messages between mobile database, such as home location register (HLR) and visitor location register (VLR) for both the current protocol and the proposed protocol. The simulation results show that the authentication delay and current load transaction messages between entities and bandwidth are minimized as compared to current protocol. Therefore, the performance and the authentication delay time have been improved significantly.
Human-robot interaction (HRI) occupies an essential role in the flourishing market for intelligent robots for a wide range of asymmetric personal and entertainment applications, ranging from assisting older people and the severely disabled to the entertainment robots at amusement parks. Improving the way humans and machines interact can help democratize robotics. With machine and deep learning techniques, robots will more easily adapt to new tasks, conditions, and environments. In this paper, we develop, implement, and evaluate the performance of the machine-learning-based HRI model in a collaborative environment. Specifically, we examine five supervised machine learning models viz. the ensemble of bagging trees (EBT) model, the k-nearest neighbor (kNN) model, the logistic regression kernel (LRK), the fine decision trees (FDT), and the subspace discriminator (SDC). The proposed models have been evaluated on an ample and modern contact detection dataset (CDD 2021). CDD 2021 is gathered from a real-world robot arm, Franka Emika Panda, when it was executing repetitive asymmetric movements. Typical performance assessment factors are applied to assess the model effectiveness in terms of detection accuracy, sensitivity, specificity, speed, and error ratios. Our experiential evaluation shows that the ensemble technique provides higher performance with a lower error ratio compared with other developed supervised models. Therefore, this paper proposes an ensemble-based bagged trees (EBT) detection model for classifying physical human–robot contact into three asymmetric types of contacts, including noncontact, incidental, and intentional. Our experimental results exhibit outstanding contact detection performance metrics scoring 97.1%, 96.9%, and 97.1% for detection accuracy, precision, and sensitivity, respectively. Besides, a low prediction overhead has been observed for the contact detection model, requiring a 102 µS to provide the correct detection state. Hence, the developed scheme can be efficiently adopted through the application requiring physical human–robot contact to give fast accurate detection to the contacts between the human arm and the robot arm.
Twitter is one of the most popular platforms used to share and post ideas. Hackers and anonymous attackers use these platforms maliciously, and their behavior can be used to predict the risk of future attacks, by gathering and classifying hackers’ tweets using machine-learning techniques. Previous approaches for detecting infected tweets are based on human efforts or text analysis, thus they are limited to capturing the hidden text between tweet lines. The main aim of this research paper is to enhance the efficiency of hacker detection for the Twitter platform using the complex networks technique with adapted machine learning algorithms. This work presents a methodology that collects a list of users with their followers who are sharing their posts that have similar interests from a hackers’ community on Twitter. The list is built based on a set of suggested keywords that are the commonly used terms by hackers in their tweets. After that, a complex network is generated for all users to find relations among them in terms of network centrality, closeness, and betweenness. After extracting these values, a dataset of the most influential users in the hacker community is assembled. Subsequently, tweets belonging to users in the extracted dataset are gathered and classified into positive and negative classes. The output of this process is utilized with a machine learning process by applying different algorithms. This research build and investigate an accurate dataset containing real users who belong to a hackers’ community. Correctly, classified instances were measured for accuracy using the average values of K-nearest neighbor, Naive Bayes, Random Tree, and the support vector machine techniques, demonstrating about 90% and 88% accuracy for cross-validation and percentage split respectively. Consequently, the proposed network cyber Twitter model is able to detect hackers, and determine if tweets pose a risk to future institutions and individuals to provide early warning of possible attacks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.