Cold metal transfer (CMT) welding technique was used in the manufacturing of hypoeutectic carbide-type Co-based Stellite 12 hardfacings on martensitic stainless steel. It was discovered that the CMT process is capable of producing relatively thick (> 2.5 mm) low diluted single-layer coatings with cored Stellite 12 wire without cracks and pores. These coatings were investigated using microscopy (optical and scanning electron microscopy), X-ray diffraction, and hardness measurements. The high melting point chromium and tungsten particles inside the cored wire were relatively large and therefore remained unmelted in the clad layers. Self-mated sliding wear tests were performed using a pin-on-disc tribometer at room temperature and at 300 °C to determine the wear resistance and friction of the coatings. The coefficients of friction were relatively similar (~ 0.35) at both temperatures. Differences were exhibited in the ~ 40% greater loss of material at high temperature. The wear performance of the CMT clad Stellite 12 coatings did not, however, reach the wear performance of self-mated laser clad Stellite 6 reference material. CMT hardfacing was finally successfully demonstrated on a ring-shaped component.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.