Societal Impact StatementHumankind is facing both climate and biodiversity crises. This article proposes the foundations of a scheme that offers tradable credits for combined aboveground and soil carbon and biodiversity. Multidiversity—as estimated based on high‐throughput molecular identification of soil meiofauna, fungi, bacteria, protists, plants and other organisms shedding DNA into soil, complemented by acoustic and video analyses of aboveground macrobiota—offers a cost‐effective method that captures much of the terrestrial biodiversity. Such a voluntary crediting system would increase the quality of carbon projects and contribute funding for delivering the Kunming‐Montreal Global Biodiversity Framework.SummaryCarbon crediting and land offsets for biodiversity protection have been developed to tackle the challenges of increasing greenhouse gas emissions and the loss of global biodiversity. Unfortunately, these two mechanisms are not optimal when considered separately. Focusing solely on carbon capture—the primary goal of most carbon‐focused crediting and offsetting commitments—often results in the establishment of non‐native, fast‐growing monocultures that negatively affect biodiversity and soil‐related ecosystem services. Soil contributes a vast proportion of global biodiversity and contains traces of aboveground organisms. Here, we outline a carbon and biodiversity co‐crediting scheme based on the multi‐kingdom molecular and carbon analyses of soil samples, along with remote sensing estimation of aboveground carbon as well as video and acoustic analyses‐based monitoring of aboveground macroorganisms. Combined, such a co‐crediting scheme could help halt biodiversity loss by incentivising industry and governments to account for biodiversity in carbon sequestration projects more rigorously, explicitly and equitably than they currently do. In most cases, this would help prioritise protection before restoration and help promote more socially and environmentally sustainable land stewardship towards a ‘nature positive’ future.
Carbon crediting and land offsets for biodiversity protection are implemented to tackle the challenges of increasing greenhouse gas emissions and loss of global biodiversity, but these two mechanisms are not optimal when considered separately. Focusing solely on carbon capture – the primary goal of most carbon-focused offsetting commitments – often results in the establishment of non-native, fast-growing monocultures that negatively affect biodiversity and soil-related ecosystem services. Soil contributes a vast proportion of global biodiversity and contains traces of aboveground organisms. Here we introduce a carbon and biodiversity co-crediting scheme based on the multi-kingdom molecular analysis and carbon analysis of soil samples and remote sensing for above-ground carbon analysis. Combined, such a co-crediting scheme could help halt biodiversity loss by incentivising industry and governments to fully account for biodiversity in carbon sequestration projects, prioritising protection before restoration and promoting socially and environmentally sustainable land stewardship in society’s journey towards a ‘Net Positive’ future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.