Aortic distensability is the key to normal aortic function and relates to the lamellar unit in the media. However, the organization of the extracellular matrix components in these lamellar units, which are largely responsible for the distensability, is insufficiently known, especially in the human. We therefore performed a detailed ultrastructural analysis of these components.Thoracic aortas of 56 individuals (age 45-74 years), none of whom suffered from aortic disease, were studied by immunoelectron microscopy of elastin, collagen types I, III, IV, V, and VI, fibronectin, and fibrillin-1, and by ultrastructural histochemistry of proteoglycans, which were further characterized by enzymatic digestion.The elastic lamellae were closely associated with thick collagen fibers containing types I, III, and V collagen. Between these collagen fibers, numerous complex, circumferentially oriented streaks of elastin protruded from the lamellae. In contrast to what is usually reported in the aortas of experimental animals, the smooth muscle cells preferentially adhered to these ill-defined streaks rather than directly to the solid lamellae. Fibrillin-1-and type VI collagen-containing bundles of microfibrils (oxytalan fibers) were also involved in the smooth muscle cell-elastin contact. The smooth muscle cells were invested by basal lamina-like layers connecting them to each other as well as to the oxytalan fibers. Unexpectedly, these layers were abundantly labeled by anti-fibronectin, whereas type IV collagen, a specific basement membrane component, was mainly found in larger, flocculent deposits. The proteoglycans present were collagen-associated dermatan sulfate proteoglycan, cell-associated heparan sulfate proteoglycan, and interstitial chondroitin sulfate proteoglycan.Our observations demonstrate that the extracellular matrix in the human aorta is extremely complex and therefore differs from most descriptions based on experimental animals. They serve as reference for future studies on aortic diseases, such as aneurysmas and dissections.
Aortic distensability is the key to normal aortic function and relates to the lamellar unit in the media. However, the organization of the extracellular matrix components in these lamellar units, which are largely responsible for the distensability, is insufficiently known, especially in the human. We therefore performed a detailed ultrastructural analysis of these components. Thoracic aortas of 56 individuals (age 45-74 years), none of whom suffered from aortic disease, were studied by immunoelectron microscopy of elastin, collagen types I, III, IV, V, and VI, fibronectin, and fibrillin-1, and by ultrastructural histochemistry of proteoglycans, which were further characterized by enzymatic digestion. The elastic lamellae were closely associated with thick collagen fibers containing types I, III, and V collagen. Between these collagen fibers, numerous complex, circumferentially oriented streaks of elastin protruded from the lamellae. In contrast to what is usually reported in the aortas of experimental animals, the smooth muscle cells preferentially adhered to these ill-defined streaks rather than directly to the solid lamellae. Fibrillin-1- and type VI collagen-containing bundles of microfibrils (oxytalan fibers) were also involved in the smooth muscle cell-elastin contact. The smooth muscle cells were invested by basal lamina-like layers connecting them to each other as well as to the oxytalan fibers. Unexpectedly, these layers were abundantly labeled by anti-fibronectin, whereas type IV collagen, a specific basement membrane component, was mainly found in larger, flocculent deposits. The proteoglycans present were collagen-associated dermatan sulfate proteoglycan, cell-associated heparan sulfate proteoglycan, and interstitial chondroitin sulfate proteoglycan. Our observations demonstrate that the extracellular matrix in the human aorta is extremely complex and therefore differs from most descriptions based on experimental animals. They serve as reference for future studies on aortic diseases, such as aneurysmas and dissections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.