Intervertebral disc degeneration is a major cause of low back pain. Despite its long history and large socio-economical impact in western societies, the initiation and progress of disc degeneration is not well understood and a generic disease model is lacking. In literature, mechanics and biology have both been implicated as the predominant inductive cause; here we argue that they are interconnected and amplify each other. This view is supported by the growing awareness that cellular physiology is strongly affected by mechanical loading. We propose a vicious circle of mechanical overloading, catabolic cell response, and degeneration of the water-binding extracellular matrix. Rather than simplifying the disease, the model illustrates the complexity of disc degeneration, because all factors are interrelated. It may however solve some of the controversy in the field, because the vicious circle can be entered at any point, eventually leading to the same pathology. The proposed disease model explains the comparable efficacy of very different animal models of disc degeneration, but also helps to consider the consequences of therapeutic interventions, either at the cellular, material or mechanical level.
IntroductionPregnancy-related lumbopelvic pain has puzzled medicine for a long time. More than 2,000 years ago, Hippocrates (c. 460-c. 377 B.C.) theorised that an irreversible relaxation and widening of the pelvis occurs with the first pregnancy [50], the resultant instability of the sacroiliac joints leading to symptomatic inflammation [94].Recent literature suggests that around half of all pregnant women incur lumbopelvic pain [7, 31, 35, 62,
The concepts of comfort and discomfort in sitting are under debate. There is no widely accepted definition, although it is beyond dispute that comfort and discomfort are feelings or emotions that are subjective in nature. Yet, beside several subjective methodologies, several objective methods (e.g. posture analysis, pressure measurements, electromyography (EMG) are in use to assess sitting comfort or discomfort. In the current paper a theoretical framework is presented, in which comfort and discomfort were defined and the hypothetical associations with underlying factors were indicated. Next, the literature was reviewed to determine the relationships between objective measures and subjective ratings of comfort and discomfort. Twenty-one studies were found in which simultaneous measures of an objective parameter and a subjective rating of comfort or discomfort were obtained. Pressure distribution appears to be the objective measure with the most clear association with the subjective ratings. For other variables, regarding spinal profile or muscle activity for instance, the reported associations are less clear and usually not statistically significant.
Study Design. A comparative study of trunk muscle recruitment patterns in healthy control subjects and patients with chronic low back pain was conducted. Objective. To assess trunk muscle recruitment in patients with low back pain. Summary of Background Data. Conflicting evidence has been reported on the level and pattern of trunk muscle recruitment in patients with low back pain. The disparities can be explained partly by methodologic differences. It was hypothesized that trunk muscle recruitment patterns may be altered in patients with low back pain to compensate for reduced spinal stability. Methods. For this study, 16 patients with low back pain and 16 matched control subjects performed slow trunk motions about the neutral posture and isometric ramp contractions while seated upright. Ratios of electromyographic amplitudes and estimated moment contributions of antagonist over agonist muscles and of segmentally inserting muscles over muscles inserting on the thorax and pelvis only were calculated. In addition, model simulations were performed to assess the effect of changes in muscle recruitment on spinal stability. Results. The ratios of antagonist over agonist, and of lumbar over thoracic erector spinae electromyographic amplitude and estimated moment contributions were greater in the patients than in the control subjects. The simulation model predicted that these changes would effectively increase spinal stability. Conclusions. Trunk muscle recruitment patterns in patients with low back pain are different from those in healthy control subjects. The differences are likely to be functional with respect to enhancement of spinal stability in the patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.