Bridges are vital in the operation of railway networks since any hindrances to their operation could suspend the flow of traffic. An important characteristic of bridges highly affecting their behavior is the skew angle. In this paper, a sensitivity analysis is performed to identify the effects of skew angle on train-track interaction for single-and double-sided crossings of a high-speed train. Comprehensive three-dimensional finite element models of the bridge and vehicle are developed, which are then calibrated using dynamic field test results. Effects of skew angle on shape modes and modal frequencies, acceleration values, and bridge displacement in various crossing speeds are studied. The results showed that if the bridge skew angle is more than 15°, it will affect the modal shape and frequency of the bridge. When the skew angle is less than 15°, the results of the bridge displacement are similar to those of the bridge with skew angle of zero. However, with the increase of the skew angle, the deformation value of the bridge decreases and the speed corresponding to the maximum displacement value also varies. Finally, the results of acceleration due to the speed and skew angle of the bridge are not the same in one-way and two-way passing states. Keywordsbridge-train interaction, high-speed train, finite element model, single-and double-sided crossings, dynamic field test verification 696|
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.