In the past few years, Internet of Things (IoT) devices have evolved faster and the use of these devices is exceedingly increasing to make our daily activities easier than ever. However, numerous security flaws persist on IoT devices due to the fact that the majority of them lack the memory and computing resources necessary for adequate security operations. As a result, IoT devices are affected by a variety of attacks. A single attack on network systems or devices can lead to significant damages in data security and privacy. However, machine-learning techniques can be applied to detect IoT attacks. In this paper, a hybrid machine learning scheme called XGB-RF is proposed for detecting intrusion attacks. The proposed hybrid method was applied to the N-BaIoT dataset containing hazardous botnet attacks. Random forest (RF) was used for the feature selection and eXtreme Gradient Boosting (XGB) classifier was used to detect different types of attacks on IoT environments. The performance of the proposed XGB-RF scheme is evaluated based on several evaluation metrics and demonstrates that the model successfully detects 99.94% of the attacks. After comparing it with state-of-the-art algorithms, our proposed model has achieved better performance for every metric. As the proposed scheme is capable of detecting botnet attacks effectively, it can significantly contribute to reducing the security concerns associated with IoT systems.
Coronavirus has become a significant concern for the whole world. It has had a substantial influence on our social and economic life. The infection rate is rapidly increasing at every moment throughout the world. At present, predicting coronavirus has become one of the challenging issues for us. As the pace of COVID-19 detection increases, so does the death rate. This research predicts the number of coronavirus detection and deaths using Fbprophet, a tool designed to assist in performing time series forecasting at a large scale. Two major affected countries, India and Japan, have been taken into consideration in our approach. Using the prophet model, a prediction is performed on the number of total cases, new cases, total deaths and new deaths. This model works considerably well, and it has given a satisfactory result that may help the authority in taking early and appropriate decisions depending on the predicted COVID situation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.