Generalized pustular psoriasis (GPP) is a severe multi-systemic inflammatory disease characterized by neutrophilic pustulosis and triggered by pro-inflammatory IL-36 cytokines in skin. While 19%–41% of affected individuals harbor bi-allelic mutations in IL36RN , the genetic cause is not known in most cases. To identify and characterize new pathways involved in the pathogenesis of GPP, we performed whole-exome sequencing in 31 individuals with GPP and demonstrated effects of mutations in MPO encoding the neutrophilic enzyme myeloperoxidase (MPO). We discovered eight MPO mutations resulting in MPO -deficiency in neutrophils and monocytes. MPO mutations, primarily those resulting in complete MPO deficiency, cumulatively associated with GPP (p = 1.85E−08; OR = 6.47). The number of mutant MPO alleles significantly differed between 82 affected individuals and >4,900 control subjects (p = 1.04E−09); this effect was stronger when including IL36RN mutations (1.48E−13) and correlated with a younger age of onset (p = 0.0018). The activity of four proteases, previously implicated as activating enzymes of IL-36 precursors, correlated with MPO deficiency. Phorbol-myristate-acetate-induced formation of neutrophil extracellular traps (NETs) was reduced in affected cells (p = 0.015), and phagocytosis assays in MPO-deficient mice and human cells revealed altered neutrophil function and impaired clearance of neutrophils by monocytes (efferocytosis) allowing prolonged neutrophil persistence in inflammatory skin. MPO mutations contribute significantly to GPP’s pathogenesis. We implicate MPO as an inflammatory modulator in humans that regulates protease activity and NET formation and modifies efferocytosis. Our findings indicate possible implications for the application of MPO inhibitors in cardiovascular diseases. MPO and affected pathways represent attractive targets for inducing resolution of inflammation in neutrophil-mediated skin diseases.
The Rasa Aragonesa sheep is the second most important Spanish breed after the Merino breed. Reported here is the prion protein (PrP) haplotype frequency distribution for scrapie-related codons (136, 154 and 171) and a sequencing study of the complete PrP gene open reading frame for this breed and six other closely related breeds. The study includes four scrapie-affected sheep flocks belonging to Rasa Aragonesa and Rasa Navarra breeds. Thirty-eight scrapie-affected sheep, 502 healthy sheep from scrapie-affected flocks and 905 sheep from a breed survey were genotyped. The most frequent PrP haplotype in both scrapie and healthy flocks was ARQ, which was found at significantly higher frequency in scrapie-affected sheep. The susceptibility-associated VRQ haplotype was found at low frequencies in six out of eight breeds, but was not present in the 38 scrapie-affected sheep. The resistance-associated ARR haplotype was found in all breeds except one (Ojinegra) at frequencies ¢14 %. Fourteen amino acid polymorphisms were detected in these Spanish sheep, including the known amino acid substitutions at codons 112, 136, 141, 143, 154, 171 and 176, and new polymorphisms at codons 101 (QRR), 151 (RRG), 151 (RRH), 172 (YRD) and 175 (QRE). Most of the novel polymorphic codons show frequencies lower than 5 %.
To provide data to better understand AT-MSCs and BM-MSCs behaviour in vitro.
BackgroundMesenchymal stem cells (MSCs) are multipotent stem cells with capacity to differentiate into several mesenchymal lineages. This quality makes MSCs good candidates for use in cell therapy. MSCs can be isolated from a variety of tissues including bone marrow and adipose tissue, which are the most common sources of these cells. However, MSCs can also be isolated from peripheral blood. Sheep has been proposed as an ideal model for biomedical studies including those of orthopaedics and transmissible spongiform encephalopathies (TSEs). The aim of this work was to advance these studies by investigating the possibility of MSC isolation from ovine peripheral blood (oPB-MSCs) and by subsequently characterizing there in vitro properties.ResultsPlastic-adherent fibroblast-like cells were obtained from the mononuclear fraction of blood samples. These cells were analysed for their proliferative and differentiation potential into adipocytes, osteoblasts and chondrocytes, as well as for the gene expression of cell surface markers. The isolated cells expressed transcripts for markers CD29, CD73 and CD90, but failed to express the haematopoietic marker CD45 and expressed only low levels of CD105. The expression of CD34 was variable. The differentiation potential of this cell population was evaluated using specific differentiation media. Although the ability of the cultures derived from different animals to differentiate into adipocytes, osteoblasts and chondrocytes was heterogeneous, we confirmed this feature using specific staining and analysing the gene expression of differentiation markers. Finally, we tested the ability of oPB-MSCs to transdifferentiate into neuronal-like cells. Morphological changes were observed after 24-hour culture in neurogenic media, and the transcript levels of the neurogenic markers increased during the prolonged induction period. Moreover, oPB-MSCs expressed the cellular prion protein gene (PRNP), which was up-regulated during neurogenesis.ConclusionsThis study describes for the first time the isolation and characterization of oPB-MSCs. Albeit some variability was observed between animals, these cells retained their capacity to differentiate into mesenchymal lineages and to transdifferentiate into neuron-like cells in vitro. Therefore, oPB-MSCs could serve as a valuable tool for biomedical research in fields including orthopaedics or prion diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.